Loading…

Enabling Longitudinal Respiration Monitoring Using Vapor-Coated Conducting Textiles

Wearable sensors allow for portable, long-term health monitoring in natural environments. Recently, there has been an increase in demand for technology that can reliably monitor respiration, which can be indicative of cardiac diseases, asthma, and infection by respiratory viruses. However, to date,...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2021-11, Vol.6 (47), p.31869-31875
Main Authors: Allison, Linden K, Rostaminia, Soha, Kiaghadi, Ali, Ganesan, Deepak, Andrew, Trisha L
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wearable sensors allow for portable, long-term health monitoring in natural environments. Recently, there has been an increase in demand for technology that can reliably monitor respiration, which can be indicative of cardiac diseases, asthma, and infection by respiratory viruses. However, to date, the most reliable respiration monitoring system involves a tightly worn chest belt that is not conducive to longitudinal monitoring. Herein, we report that accurate respiration monitoring can be effected using a fabric-based humidity sensor mounted within a face mask. Our humidity sensor is created using cotton fabrics coated with a persistently p-doped conjugated polymer, poly­(3,4-ethylenedioxythiophene):chloride (PEDOT-Cl), using a previously reported chemical vapor deposition process. The vapor-deposited polymer coating displays a stable, rapid, and reversible change in conductivity with an increase in local humidity, such as the humidity changes experienced within a face mask as the wearer breathes. Thus, when integrated into a face mask, the PEDOT-Cl-coated cotton humidity sensor is able to transduce breaths into an electrical signal. The humidity sensor-incorporated face mask is able to differentiate between deep and shallow breathing, as well as breathing versus talking. The sensor-incorporated face mask platform also functions both while walking and sitting, providing equally high signal quality in both indoor and outdoor contexts. Additionally, we show that the face mask can be worn for long periods of time with a negligible decline in the signal quality.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.1c04616