Loading…

Physical Layer Authentication in Wireless Networks-Based Machine Learning Approaches

The physical layer security of wireless networks is becoming increasingly important because of the rapid development of wireless communications and the increasing security threats. In addition, because of the open nature of the wireless channel, authentication is a critical issue in wireless communi...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2023-02, Vol.23 (4), p.1814
Main Authors: Alhoraibi, Lamia, Alghazzawi, Daniyal, Alhebshi, Reemah, Rabie, Osama Bassam J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-d806c5eee59d68f627706723aa70a124b5e5ca191b9ef88605978cddcfa00e553
cites cdi_FETCH-LOGICAL-c438t-d806c5eee59d68f627706723aa70a124b5e5ca191b9ef88605978cddcfa00e553
container_end_page
container_issue 4
container_start_page 1814
container_title Sensors (Basel, Switzerland)
container_volume 23
creator Alhoraibi, Lamia
Alghazzawi, Daniyal
Alhebshi, Reemah
Rabie, Osama Bassam J
description The physical layer security of wireless networks is becoming increasingly important because of the rapid development of wireless communications and the increasing security threats. In addition, because of the open nature of the wireless channel, authentication is a critical issue in wireless communications. Physical layer authentication (PLA) is based on distinctive features to provide information-theory security and low complexity. However, although many researchers are interested in the PLA and how it might be used to improve wireless security, there is surprisingly little literature on the subject, with no systematic overview of the current state-of-the-art PLA and the main foundations involved. Therefore, this paper aims to determine and systematically compare existing studies in the physical layer authentication. This study showed whether machine learning approaches in physical layer authentication models increased wireless network security performance and demonstrated the latest techniques used in PLA. Moreover, it identified issues and suggested directions for future research. This study is valuable for researchers and security model developers interested in using machine learning (ML) and deep learning (DL) approaches for PLA in wireless communication systems in future research and designs.
doi_str_mv 10.3390/s23041814
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3f4d19ed9f684c6b8e3ec4714fbd18ab</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743368354</galeid><doaj_id>oai_doaj_org_article_3f4d19ed9f684c6b8e3ec4714fbd18ab</doaj_id><sourcerecordid>A743368354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-d806c5eee59d68f627706723aa70a124b5e5ca191b9ef88605978cddcfa00e553</originalsourceid><addsrcrecordid>eNpdksmOEzEQhlsIxCxw4AVQS1yYQw_e274ghRHLSGE5DOJoue1y4tCxg90NyttjyBDNIB9s_f7qr0XVNM8wuqRUoVeFUMSwxOxBc4oZYZ0kBD288z5pzkrZIEQopfJxc0KF5DWCnDY3X9b7EqwZ26XZQ24X87SGOFVlCim2IbbfQoYRSmk_wfQr5e-le2MKuPajsesQoV2CyTHEVbvY7XKqIpQnzSNvxgJPb-_z5uu7tzdXH7rl5_fXV4tlZxmVU-ckEpYDAFdOSC9I3yPRE2pMjwwmbODArcEKDwq8lAJx1UvrnPUGIeCcnjfXB1-XzEbvctiavNfJBP1XSHmlTa69jKCpZw4rcMoLyawYJFCwrMfMDw5LM1Sv1wev3Txswdk6hGzGe6b3f2JY61X6qZXitTRVDV7eGuT0Y4Yy6W0oFsbRREhz0aSXqBcMM1rRF_-hmzTnWEdVqV5xjjBFlbo8UCtTGwjRp5rX1uNgG2yK4EPVF301FJJyVgMuDgE2p1Iy-GP1GOk_i6KPi1LZ53fbPZL_NoP-BlK-uDY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779550130</pqid></control><display><type>article</type><title>Physical Layer Authentication in Wireless Networks-Based Machine Learning Approaches</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Alhoraibi, Lamia ; Alghazzawi, Daniyal ; Alhebshi, Reemah ; Rabie, Osama Bassam J</creator><creatorcontrib>Alhoraibi, Lamia ; Alghazzawi, Daniyal ; Alhebshi, Reemah ; Rabie, Osama Bassam J</creatorcontrib><description>The physical layer security of wireless networks is becoming increasingly important because of the rapid development of wireless communications and the increasing security threats. In addition, because of the open nature of the wireless channel, authentication is a critical issue in wireless communications. Physical layer authentication (PLA) is based on distinctive features to provide information-theory security and low complexity. However, although many researchers are interested in the PLA and how it might be used to improve wireless security, there is surprisingly little literature on the subject, with no systematic overview of the current state-of-the-art PLA and the main foundations involved. Therefore, this paper aims to determine and systematically compare existing studies in the physical layer authentication. This study showed whether machine learning approaches in physical layer authentication models increased wireless network security performance and demonstrated the latest techniques used in PLA. Moreover, it identified issues and suggested directions for future research. This study is valuable for researchers and security model developers interested in using machine learning (ML) and deep learning (DL) approaches for PLA in wireless communication systems in future research and designs.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23041814</identifier><identifier>PMID: 36850412</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Access control ; Algorithms ; Artificial intelligence ; Authentication ; Confidentiality ; Cryptography ; Deep learning ; Internet of Things ; Machine learning ; Network security ; physical layer authentication ; physical layer security ; Research methodology ; Review ; Security systems ; signal classification ; Signal processing ; Spread spectrum ; Systematic review ; Telecommunication systems ; Ubiquitous computing ; Wireless access points ; wireless communication ; Wireless communication systems ; Wireless communications ; Wireless networks</subject><ispartof>Sensors (Basel, Switzerland), 2023-02, Vol.23 (4), p.1814</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-d806c5eee59d68f627706723aa70a124b5e5ca191b9ef88605978cddcfa00e553</citedby><cites>FETCH-LOGICAL-c438t-d806c5eee59d68f627706723aa70a124b5e5ca191b9ef88605978cddcfa00e553</cites><orcidid>0000-0001-8680-7080 ; 0000-0002-7662-6646 ; 0000-0001-7940-059X ; 0000-0002-5533-3203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779550130/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779550130?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36850412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alhoraibi, Lamia</creatorcontrib><creatorcontrib>Alghazzawi, Daniyal</creatorcontrib><creatorcontrib>Alhebshi, Reemah</creatorcontrib><creatorcontrib>Rabie, Osama Bassam J</creatorcontrib><title>Physical Layer Authentication in Wireless Networks-Based Machine Learning Approaches</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>The physical layer security of wireless networks is becoming increasingly important because of the rapid development of wireless communications and the increasing security threats. In addition, because of the open nature of the wireless channel, authentication is a critical issue in wireless communications. Physical layer authentication (PLA) is based on distinctive features to provide information-theory security and low complexity. However, although many researchers are interested in the PLA and how it might be used to improve wireless security, there is surprisingly little literature on the subject, with no systematic overview of the current state-of-the-art PLA and the main foundations involved. Therefore, this paper aims to determine and systematically compare existing studies in the physical layer authentication. This study showed whether machine learning approaches in physical layer authentication models increased wireless network security performance and demonstrated the latest techniques used in PLA. Moreover, it identified issues and suggested directions for future research. This study is valuable for researchers and security model developers interested in using machine learning (ML) and deep learning (DL) approaches for PLA in wireless communication systems in future research and designs.</description><subject>Access control</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Authentication</subject><subject>Confidentiality</subject><subject>Cryptography</subject><subject>Deep learning</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Network security</subject><subject>physical layer authentication</subject><subject>physical layer security</subject><subject>Research methodology</subject><subject>Review</subject><subject>Security systems</subject><subject>signal classification</subject><subject>Signal processing</subject><subject>Spread spectrum</subject><subject>Systematic review</subject><subject>Telecommunication systems</subject><subject>Ubiquitous computing</subject><subject>Wireless access points</subject><subject>wireless communication</subject><subject>Wireless communication systems</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdksmOEzEQhlsIxCxw4AVQS1yYQw_e274ghRHLSGE5DOJoue1y4tCxg90NyttjyBDNIB9s_f7qr0XVNM8wuqRUoVeFUMSwxOxBc4oZYZ0kBD288z5pzkrZIEQopfJxc0KF5DWCnDY3X9b7EqwZ26XZQ24X87SGOFVlCim2IbbfQoYRSmk_wfQr5e-le2MKuPajsesQoV2CyTHEVbvY7XKqIpQnzSNvxgJPb-_z5uu7tzdXH7rl5_fXV4tlZxmVU-ckEpYDAFdOSC9I3yPRE2pMjwwmbODArcEKDwq8lAJx1UvrnPUGIeCcnjfXB1-XzEbvctiavNfJBP1XSHmlTa69jKCpZw4rcMoLyawYJFCwrMfMDw5LM1Sv1wev3Txswdk6hGzGe6b3f2JY61X6qZXitTRVDV7eGuT0Y4Yy6W0oFsbRREhz0aSXqBcMM1rRF_-hmzTnWEdVqV5xjjBFlbo8UCtTGwjRp5rX1uNgG2yK4EPVF301FJJyVgMuDgE2p1Iy-GP1GOk_i6KPi1LZ53fbPZL_NoP-BlK-uDY</recordid><startdate>20230206</startdate><enddate>20230206</enddate><creator>Alhoraibi, Lamia</creator><creator>Alghazzawi, Daniyal</creator><creator>Alhebshi, Reemah</creator><creator>Rabie, Osama Bassam J</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8680-7080</orcidid><orcidid>https://orcid.org/0000-0002-7662-6646</orcidid><orcidid>https://orcid.org/0000-0001-7940-059X</orcidid><orcidid>https://orcid.org/0000-0002-5533-3203</orcidid></search><sort><creationdate>20230206</creationdate><title>Physical Layer Authentication in Wireless Networks-Based Machine Learning Approaches</title><author>Alhoraibi, Lamia ; Alghazzawi, Daniyal ; Alhebshi, Reemah ; Rabie, Osama Bassam J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-d806c5eee59d68f627706723aa70a124b5e5ca191b9ef88605978cddcfa00e553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Access control</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Authentication</topic><topic>Confidentiality</topic><topic>Cryptography</topic><topic>Deep learning</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Network security</topic><topic>physical layer authentication</topic><topic>physical layer security</topic><topic>Research methodology</topic><topic>Review</topic><topic>Security systems</topic><topic>signal classification</topic><topic>Signal processing</topic><topic>Spread spectrum</topic><topic>Systematic review</topic><topic>Telecommunication systems</topic><topic>Ubiquitous computing</topic><topic>Wireless access points</topic><topic>wireless communication</topic><topic>Wireless communication systems</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alhoraibi, Lamia</creatorcontrib><creatorcontrib>Alghazzawi, Daniyal</creatorcontrib><creatorcontrib>Alhebshi, Reemah</creatorcontrib><creatorcontrib>Rabie, Osama Bassam J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alhoraibi, Lamia</au><au>Alghazzawi, Daniyal</au><au>Alhebshi, Reemah</au><au>Rabie, Osama Bassam J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical Layer Authentication in Wireless Networks-Based Machine Learning Approaches</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2023-02-06</date><risdate>2023</risdate><volume>23</volume><issue>4</issue><spage>1814</spage><pages>1814-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The physical layer security of wireless networks is becoming increasingly important because of the rapid development of wireless communications and the increasing security threats. In addition, because of the open nature of the wireless channel, authentication is a critical issue in wireless communications. Physical layer authentication (PLA) is based on distinctive features to provide information-theory security and low complexity. However, although many researchers are interested in the PLA and how it might be used to improve wireless security, there is surprisingly little literature on the subject, with no systematic overview of the current state-of-the-art PLA and the main foundations involved. Therefore, this paper aims to determine and systematically compare existing studies in the physical layer authentication. This study showed whether machine learning approaches in physical layer authentication models increased wireless network security performance and demonstrated the latest techniques used in PLA. Moreover, it identified issues and suggested directions for future research. This study is valuable for researchers and security model developers interested in using machine learning (ML) and deep learning (DL) approaches for PLA in wireless communication systems in future research and designs.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36850412</pmid><doi>10.3390/s23041814</doi><orcidid>https://orcid.org/0000-0001-8680-7080</orcidid><orcidid>https://orcid.org/0000-0002-7662-6646</orcidid><orcidid>https://orcid.org/0000-0001-7940-059X</orcidid><orcidid>https://orcid.org/0000-0002-5533-3203</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2023-02, Vol.23 (4), p.1814
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3f4d19ed9f684c6b8e3ec4714fbd18ab
source Open Access: PubMed Central; Publicly Available Content Database
subjects Access control
Algorithms
Artificial intelligence
Authentication
Confidentiality
Cryptography
Deep learning
Internet of Things
Machine learning
Network security
physical layer authentication
physical layer security
Research methodology
Review
Security systems
signal classification
Signal processing
Spread spectrum
Systematic review
Telecommunication systems
Ubiquitous computing
Wireless access points
wireless communication
Wireless communication systems
Wireless communications
Wireless networks
title Physical Layer Authentication in Wireless Networks-Based Machine Learning Approaches
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20Layer%20Authentication%20in%20Wireless%20Networks-Based%20Machine%20Learning%20Approaches&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Alhoraibi,%20Lamia&rft.date=2023-02-06&rft.volume=23&rft.issue=4&rft.spage=1814&rft.pages=1814-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23041814&rft_dat=%3Cgale_doaj_%3EA743368354%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-d806c5eee59d68f627706723aa70a124b5e5ca191b9ef88605978cddcfa00e553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779550130&rft_id=info:pmid/36850412&rft_galeid=A743368354&rfr_iscdi=true