Loading…
Physical Layer Authentication in Wireless Networks-Based Machine Learning Approaches
The physical layer security of wireless networks is becoming increasingly important because of the rapid development of wireless communications and the increasing security threats. In addition, because of the open nature of the wireless channel, authentication is a critical issue in wireless communi...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2023-02, Vol.23 (4), p.1814 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-d806c5eee59d68f627706723aa70a124b5e5ca191b9ef88605978cddcfa00e553 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-d806c5eee59d68f627706723aa70a124b5e5ca191b9ef88605978cddcfa00e553 |
container_end_page | |
container_issue | 4 |
container_start_page | 1814 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 23 |
creator | Alhoraibi, Lamia Alghazzawi, Daniyal Alhebshi, Reemah Rabie, Osama Bassam J |
description | The physical layer security of wireless networks is becoming increasingly important because of the rapid development of wireless communications and the increasing security threats. In addition, because of the open nature of the wireless channel, authentication is a critical issue in wireless communications. Physical layer authentication (PLA) is based on distinctive features to provide information-theory security and low complexity. However, although many researchers are interested in the PLA and how it might be used to improve wireless security, there is surprisingly little literature on the subject, with no systematic overview of the current state-of-the-art PLA and the main foundations involved. Therefore, this paper aims to determine and systematically compare existing studies in the physical layer authentication. This study showed whether machine learning approaches in physical layer authentication models increased wireless network security performance and demonstrated the latest techniques used in PLA. Moreover, it identified issues and suggested directions for future research. This study is valuable for researchers and security model developers interested in using machine learning (ML) and deep learning (DL) approaches for PLA in wireless communication systems in future research and designs. |
doi_str_mv | 10.3390/s23041814 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3f4d19ed9f684c6b8e3ec4714fbd18ab</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743368354</galeid><doaj_id>oai_doaj_org_article_3f4d19ed9f684c6b8e3ec4714fbd18ab</doaj_id><sourcerecordid>A743368354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-d806c5eee59d68f627706723aa70a124b5e5ca191b9ef88605978cddcfa00e553</originalsourceid><addsrcrecordid>eNpdksmOEzEQhlsIxCxw4AVQS1yYQw_e274ghRHLSGE5DOJoue1y4tCxg90NyttjyBDNIB9s_f7qr0XVNM8wuqRUoVeFUMSwxOxBc4oZYZ0kBD288z5pzkrZIEQopfJxc0KF5DWCnDY3X9b7EqwZ26XZQ24X87SGOFVlCim2IbbfQoYRSmk_wfQr5e-le2MKuPajsesQoV2CyTHEVbvY7XKqIpQnzSNvxgJPb-_z5uu7tzdXH7rl5_fXV4tlZxmVU-ckEpYDAFdOSC9I3yPRE2pMjwwmbODArcEKDwq8lAJx1UvrnPUGIeCcnjfXB1-XzEbvctiavNfJBP1XSHmlTa69jKCpZw4rcMoLyawYJFCwrMfMDw5LM1Sv1wev3Txswdk6hGzGe6b3f2JY61X6qZXitTRVDV7eGuT0Y4Yy6W0oFsbRREhz0aSXqBcMM1rRF_-hmzTnWEdVqV5xjjBFlbo8UCtTGwjRp5rX1uNgG2yK4EPVF301FJJyVgMuDgE2p1Iy-GP1GOk_i6KPi1LZ53fbPZL_NoP-BlK-uDY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779550130</pqid></control><display><type>article</type><title>Physical Layer Authentication in Wireless Networks-Based Machine Learning Approaches</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Alhoraibi, Lamia ; Alghazzawi, Daniyal ; Alhebshi, Reemah ; Rabie, Osama Bassam J</creator><creatorcontrib>Alhoraibi, Lamia ; Alghazzawi, Daniyal ; Alhebshi, Reemah ; Rabie, Osama Bassam J</creatorcontrib><description>The physical layer security of wireless networks is becoming increasingly important because of the rapid development of wireless communications and the increasing security threats. In addition, because of the open nature of the wireless channel, authentication is a critical issue in wireless communications. Physical layer authentication (PLA) is based on distinctive features to provide information-theory security and low complexity. However, although many researchers are interested in the PLA and how it might be used to improve wireless security, there is surprisingly little literature on the subject, with no systematic overview of the current state-of-the-art PLA and the main foundations involved. Therefore, this paper aims to determine and systematically compare existing studies in the physical layer authentication. This study showed whether machine learning approaches in physical layer authentication models increased wireless network security performance and demonstrated the latest techniques used in PLA. Moreover, it identified issues and suggested directions for future research. This study is valuable for researchers and security model developers interested in using machine learning (ML) and deep learning (DL) approaches for PLA in wireless communication systems in future research and designs.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23041814</identifier><identifier>PMID: 36850412</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Access control ; Algorithms ; Artificial intelligence ; Authentication ; Confidentiality ; Cryptography ; Deep learning ; Internet of Things ; Machine learning ; Network security ; physical layer authentication ; physical layer security ; Research methodology ; Review ; Security systems ; signal classification ; Signal processing ; Spread spectrum ; Systematic review ; Telecommunication systems ; Ubiquitous computing ; Wireless access points ; wireless communication ; Wireless communication systems ; Wireless communications ; Wireless networks</subject><ispartof>Sensors (Basel, Switzerland), 2023-02, Vol.23 (4), p.1814</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-d806c5eee59d68f627706723aa70a124b5e5ca191b9ef88605978cddcfa00e553</citedby><cites>FETCH-LOGICAL-c438t-d806c5eee59d68f627706723aa70a124b5e5ca191b9ef88605978cddcfa00e553</cites><orcidid>0000-0001-8680-7080 ; 0000-0002-7662-6646 ; 0000-0001-7940-059X ; 0000-0002-5533-3203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779550130/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779550130?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36850412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alhoraibi, Lamia</creatorcontrib><creatorcontrib>Alghazzawi, Daniyal</creatorcontrib><creatorcontrib>Alhebshi, Reemah</creatorcontrib><creatorcontrib>Rabie, Osama Bassam J</creatorcontrib><title>Physical Layer Authentication in Wireless Networks-Based Machine Learning Approaches</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>The physical layer security of wireless networks is becoming increasingly important because of the rapid development of wireless communications and the increasing security threats. In addition, because of the open nature of the wireless channel, authentication is a critical issue in wireless communications. Physical layer authentication (PLA) is based on distinctive features to provide information-theory security and low complexity. However, although many researchers are interested in the PLA and how it might be used to improve wireless security, there is surprisingly little literature on the subject, with no systematic overview of the current state-of-the-art PLA and the main foundations involved. Therefore, this paper aims to determine and systematically compare existing studies in the physical layer authentication. This study showed whether machine learning approaches in physical layer authentication models increased wireless network security performance and demonstrated the latest techniques used in PLA. Moreover, it identified issues and suggested directions for future research. This study is valuable for researchers and security model developers interested in using machine learning (ML) and deep learning (DL) approaches for PLA in wireless communication systems in future research and designs.</description><subject>Access control</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Authentication</subject><subject>Confidentiality</subject><subject>Cryptography</subject><subject>Deep learning</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Network security</subject><subject>physical layer authentication</subject><subject>physical layer security</subject><subject>Research methodology</subject><subject>Review</subject><subject>Security systems</subject><subject>signal classification</subject><subject>Signal processing</subject><subject>Spread spectrum</subject><subject>Systematic review</subject><subject>Telecommunication systems</subject><subject>Ubiquitous computing</subject><subject>Wireless access points</subject><subject>wireless communication</subject><subject>Wireless communication systems</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdksmOEzEQhlsIxCxw4AVQS1yYQw_e274ghRHLSGE5DOJoue1y4tCxg90NyttjyBDNIB9s_f7qr0XVNM8wuqRUoVeFUMSwxOxBc4oZYZ0kBD288z5pzkrZIEQopfJxc0KF5DWCnDY3X9b7EqwZ26XZQ24X87SGOFVlCim2IbbfQoYRSmk_wfQr5e-le2MKuPajsesQoV2CyTHEVbvY7XKqIpQnzSNvxgJPb-_z5uu7tzdXH7rl5_fXV4tlZxmVU-ckEpYDAFdOSC9I3yPRE2pMjwwmbODArcEKDwq8lAJx1UvrnPUGIeCcnjfXB1-XzEbvctiavNfJBP1XSHmlTa69jKCpZw4rcMoLyawYJFCwrMfMDw5LM1Sv1wev3Txswdk6hGzGe6b3f2JY61X6qZXitTRVDV7eGuT0Y4Yy6W0oFsbRREhz0aSXqBcMM1rRF_-hmzTnWEdVqV5xjjBFlbo8UCtTGwjRp5rX1uNgG2yK4EPVF301FJJyVgMuDgE2p1Iy-GP1GOk_i6KPi1LZ53fbPZL_NoP-BlK-uDY</recordid><startdate>20230206</startdate><enddate>20230206</enddate><creator>Alhoraibi, Lamia</creator><creator>Alghazzawi, Daniyal</creator><creator>Alhebshi, Reemah</creator><creator>Rabie, Osama Bassam J</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8680-7080</orcidid><orcidid>https://orcid.org/0000-0002-7662-6646</orcidid><orcidid>https://orcid.org/0000-0001-7940-059X</orcidid><orcidid>https://orcid.org/0000-0002-5533-3203</orcidid></search><sort><creationdate>20230206</creationdate><title>Physical Layer Authentication in Wireless Networks-Based Machine Learning Approaches</title><author>Alhoraibi, Lamia ; Alghazzawi, Daniyal ; Alhebshi, Reemah ; Rabie, Osama Bassam J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-d806c5eee59d68f627706723aa70a124b5e5ca191b9ef88605978cddcfa00e553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Access control</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Authentication</topic><topic>Confidentiality</topic><topic>Cryptography</topic><topic>Deep learning</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Network security</topic><topic>physical layer authentication</topic><topic>physical layer security</topic><topic>Research methodology</topic><topic>Review</topic><topic>Security systems</topic><topic>signal classification</topic><topic>Signal processing</topic><topic>Spread spectrum</topic><topic>Systematic review</topic><topic>Telecommunication systems</topic><topic>Ubiquitous computing</topic><topic>Wireless access points</topic><topic>wireless communication</topic><topic>Wireless communication systems</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alhoraibi, Lamia</creatorcontrib><creatorcontrib>Alghazzawi, Daniyal</creatorcontrib><creatorcontrib>Alhebshi, Reemah</creatorcontrib><creatorcontrib>Rabie, Osama Bassam J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alhoraibi, Lamia</au><au>Alghazzawi, Daniyal</au><au>Alhebshi, Reemah</au><au>Rabie, Osama Bassam J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical Layer Authentication in Wireless Networks-Based Machine Learning Approaches</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2023-02-06</date><risdate>2023</risdate><volume>23</volume><issue>4</issue><spage>1814</spage><pages>1814-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The physical layer security of wireless networks is becoming increasingly important because of the rapid development of wireless communications and the increasing security threats. In addition, because of the open nature of the wireless channel, authentication is a critical issue in wireless communications. Physical layer authentication (PLA) is based on distinctive features to provide information-theory security and low complexity. However, although many researchers are interested in the PLA and how it might be used to improve wireless security, there is surprisingly little literature on the subject, with no systematic overview of the current state-of-the-art PLA and the main foundations involved. Therefore, this paper aims to determine and systematically compare existing studies in the physical layer authentication. This study showed whether machine learning approaches in physical layer authentication models increased wireless network security performance and demonstrated the latest techniques used in PLA. Moreover, it identified issues and suggested directions for future research. This study is valuable for researchers and security model developers interested in using machine learning (ML) and deep learning (DL) approaches for PLA in wireless communication systems in future research and designs.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36850412</pmid><doi>10.3390/s23041814</doi><orcidid>https://orcid.org/0000-0001-8680-7080</orcidid><orcidid>https://orcid.org/0000-0002-7662-6646</orcidid><orcidid>https://orcid.org/0000-0001-7940-059X</orcidid><orcidid>https://orcid.org/0000-0002-5533-3203</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2023-02, Vol.23 (4), p.1814 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3f4d19ed9f684c6b8e3ec4714fbd18ab |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Access control Algorithms Artificial intelligence Authentication Confidentiality Cryptography Deep learning Internet of Things Machine learning Network security physical layer authentication physical layer security Research methodology Review Security systems signal classification Signal processing Spread spectrum Systematic review Telecommunication systems Ubiquitous computing Wireless access points wireless communication Wireless communication systems Wireless communications Wireless networks |
title | Physical Layer Authentication in Wireless Networks-Based Machine Learning Approaches |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20Layer%20Authentication%20in%20Wireless%20Networks-Based%20Machine%20Learning%20Approaches&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Alhoraibi,%20Lamia&rft.date=2023-02-06&rft.volume=23&rft.issue=4&rft.spage=1814&rft.pages=1814-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23041814&rft_dat=%3Cgale_doaj_%3EA743368354%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-d806c5eee59d68f627706723aa70a124b5e5ca191b9ef88605978cddcfa00e553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779550130&rft_id=info:pmid/36850412&rft_galeid=A743368354&rfr_iscdi=true |