Loading…
A new method for exploring gene-gene and gene-environment interactions in GWAS with tree ensemble methods and SHAP values
The identification of gene-gene and gene-environment interactions in genome-wide association studies is challenging due to the unknown nature of the interactions and the overwhelmingly large number of possible combinations. Parametric regression models are suitable to look for prespecified interacti...
Saved in:
Published in: | BMC bioinformatics 2021-05, Vol.22 (1), p.230-230, Article 230 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c597t-6247f6c4534a744a85880dfdbed87e89d09787e9acce1d56aee56efd61a15dd03 |
---|---|
cites | cdi_FETCH-LOGICAL-c597t-6247f6c4534a744a85880dfdbed87e89d09787e9acce1d56aee56efd61a15dd03 |
container_end_page | 230 |
container_issue | 1 |
container_start_page | 230 |
container_title | BMC bioinformatics |
container_volume | 22 |
creator | Johnsen, Pål V Riemer-Sørensen, Signe DeWan, Andrew Thomas Cahill, Megan E Langaas, Mette |
description | The identification of gene-gene and gene-environment interactions in genome-wide association studies is challenging due to the unknown nature of the interactions and the overwhelmingly large number of possible combinations. Parametric regression models are suitable to look for prespecified interactions. Nonparametric models such as tree ensemble models, with the ability to detect any unspecified interaction, have previously been difficult to interpret. However, with the development of methods for model explainability, it is now possible to interpret tree ensemble models efficiently and with a strong theoretical basis.
We propose a tree ensemble- and SHAP-based method for identifying as well as interpreting potential gene-gene and gene-environment interactions on large-scale biobank data. A set of independent cross-validation runs are used to implicitly investigate the whole genome. We apply and evaluate the method using data from the UK Biobank with obesity as the phenotype. The results are in line with previous research on obesity as we identify top SNPs previously associated with obesity. We further demonstrate how to interpret and visualize interaction candidates.
The new method identifies interaction candidates otherwise not detected with parametric regression models. However, further research is needed to evaluate the uncertainties of these candidates. The method can be applied to large-scale biobanks with high-dimensional data. |
doi_str_mv | 10.1186/s12859-021-04041-7 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3f5d82b45d10430facb8a0016a07d9b6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A661432908</galeid><doaj_id>oai_doaj_org_article_3f5d82b45d10430facb8a0016a07d9b6</doaj_id><sourcerecordid>A661432908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-6247f6c4534a744a85880dfdbed87e89d09787e9acce1d56aee56efd61a15dd03</originalsourceid><addsrcrecordid>eNptkl1rFDEYhQdRbK3-AS8k4I1eTE0myUxyIyxF24WC4ipehkzyzmyWmaQms9v235v9sHZFAvk875PkcIriNcHnhIj6QyKV4LLEFSkxw4yUzZPilLCGlBXB_Omj-UnxIqUVxqQRmD8vTiiVrKEVPS3uZ8jDLRphWgaLuhAR3N0MITrfox48lNsOaW_3K_AbF4MfwU_I-QmiNpMLPuUFuvw5W6BbNy3RFAEQ-ARjO8CBnXaQxdXsK9roYQ3pZfGs00OCV4fxrPjx-dP3i6vy-svl_GJ2XRoum6msK9Z0tWGcMt0wpgUXAtvOtmBFA0JaLJs8kdoYIJbXGoDX0NmaaMKtxfSsmO-5NuiVuolu1PFeBe3UbiPEXuk4OTOAoh23omoZtwQzijttWqGza7XGjZVtnVkf96ybdTuCNdmGqIcj6PGJd0vVh40S-ZUSywx4dwDE8CubMKnRJQPDoD2EdVIVryoqJRM0S9_-I12FdfTZqq1KSMwxJX9Vvc4fcL4L-V6zhapZXRNGK4lFVp3_R5WbhdGZ4KFzef-o4P1RQdZMcDf1ep2Smi--HWurvdbEkFKE7sEPgtU2qGofVJWDqnZBVU0uevPYyYeSP8mkvwFnUeJA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528905031</pqid></control><display><type>article</type><title>A new method for exploring gene-gene and gene-environment interactions in GWAS with tree ensemble methods and SHAP values</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Johnsen, Pål V ; Riemer-Sørensen, Signe ; DeWan, Andrew Thomas ; Cahill, Megan E ; Langaas, Mette</creator><creatorcontrib>Johnsen, Pål V ; Riemer-Sørensen, Signe ; DeWan, Andrew Thomas ; Cahill, Megan E ; Langaas, Mette</creatorcontrib><description>The identification of gene-gene and gene-environment interactions in genome-wide association studies is challenging due to the unknown nature of the interactions and the overwhelmingly large number of possible combinations. Parametric regression models are suitable to look for prespecified interactions. Nonparametric models such as tree ensemble models, with the ability to detect any unspecified interaction, have previously been difficult to interpret. However, with the development of methods for model explainability, it is now possible to interpret tree ensemble models efficiently and with a strong theoretical basis.
We propose a tree ensemble- and SHAP-based method for identifying as well as interpreting potential gene-gene and gene-environment interactions on large-scale biobank data. A set of independent cross-validation runs are used to implicitly investigate the whole genome. We apply and evaluate the method using data from the UK Biobank with obesity as the phenotype. The results are in line with previous research on obesity as we identify top SNPs previously associated with obesity. We further demonstrate how to interpret and visualize interaction candidates.
The new method identifies interaction candidates otherwise not detected with parametric regression models. However, further research is needed to evaluate the uncertainties of these candidates. The method can be applied to large-scale biobanks with high-dimensional data.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-021-04041-7</identifier><identifier>PMID: 33947323</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Analysis ; Biobanks ; Gene expression ; Gene-Environment Interaction ; Genes ; Gene–gene and gene–environment interactions ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Genotype & phenotype ; GWAS ; Machine learning ; Methodology ; Methods ; Model explainability ; Obesity ; Phenotypes ; Polymorphism, Single Nucleotide ; Power ; Regression analysis ; Regression models ; SHAP ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Tree ensemble models ; Trees ; XGBoost</subject><ispartof>BMC bioinformatics, 2021-05, Vol.22 (1), p.230-230, Article 230</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c597t-6247f6c4534a744a85880dfdbed87e89d09787e9acce1d56aee56efd61a15dd03</citedby><cites>FETCH-LOGICAL-c597t-6247f6c4534a744a85880dfdbed87e89d09787e9acce1d56aee56efd61a15dd03</cites><orcidid>0000-0002-2599-7914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097909/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2528905031?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33947323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnsen, Pål V</creatorcontrib><creatorcontrib>Riemer-Sørensen, Signe</creatorcontrib><creatorcontrib>DeWan, Andrew Thomas</creatorcontrib><creatorcontrib>Cahill, Megan E</creatorcontrib><creatorcontrib>Langaas, Mette</creatorcontrib><title>A new method for exploring gene-gene and gene-environment interactions in GWAS with tree ensemble methods and SHAP values</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>The identification of gene-gene and gene-environment interactions in genome-wide association studies is challenging due to the unknown nature of the interactions and the overwhelmingly large number of possible combinations. Parametric regression models are suitable to look for prespecified interactions. Nonparametric models such as tree ensemble models, with the ability to detect any unspecified interaction, have previously been difficult to interpret. However, with the development of methods for model explainability, it is now possible to interpret tree ensemble models efficiently and with a strong theoretical basis.
We propose a tree ensemble- and SHAP-based method for identifying as well as interpreting potential gene-gene and gene-environment interactions on large-scale biobank data. A set of independent cross-validation runs are used to implicitly investigate the whole genome. We apply and evaluate the method using data from the UK Biobank with obesity as the phenotype. The results are in line with previous research on obesity as we identify top SNPs previously associated with obesity. We further demonstrate how to interpret and visualize interaction candidates.
The new method identifies interaction candidates otherwise not detected with parametric regression models. However, further research is needed to evaluate the uncertainties of these candidates. The method can be applied to large-scale biobanks with high-dimensional data.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biobanks</subject><subject>Gene expression</subject><subject>Gene-Environment Interaction</subject><subject>Genes</subject><subject>Gene–gene and gene–environment interactions</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genotype & phenotype</subject><subject>GWAS</subject><subject>Machine learning</subject><subject>Methodology</subject><subject>Methods</subject><subject>Model explainability</subject><subject>Obesity</subject><subject>Phenotypes</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Power</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>SHAP</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Tree ensemble models</subject><subject>Trees</subject><subject>XGBoost</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1rFDEYhQdRbK3-AS8k4I1eTE0myUxyIyxF24WC4ipehkzyzmyWmaQms9v235v9sHZFAvk875PkcIriNcHnhIj6QyKV4LLEFSkxw4yUzZPilLCGlBXB_Omj-UnxIqUVxqQRmD8vTiiVrKEVPS3uZ8jDLRphWgaLuhAR3N0MITrfox48lNsOaW_3K_AbF4MfwU_I-QmiNpMLPuUFuvw5W6BbNy3RFAEQ-ARjO8CBnXaQxdXsK9roYQ3pZfGs00OCV4fxrPjx-dP3i6vy-svl_GJ2XRoum6msK9Z0tWGcMt0wpgUXAtvOtmBFA0JaLJs8kdoYIJbXGoDX0NmaaMKtxfSsmO-5NuiVuolu1PFeBe3UbiPEXuk4OTOAoh23omoZtwQzijttWqGza7XGjZVtnVkf96ybdTuCNdmGqIcj6PGJd0vVh40S-ZUSywx4dwDE8CubMKnRJQPDoD2EdVIVryoqJRM0S9_-I12FdfTZqq1KSMwxJX9Vvc4fcL4L-V6zhapZXRNGK4lFVp3_R5WbhdGZ4KFzef-o4P1RQdZMcDf1ep2Smi--HWurvdbEkFKE7sEPgtU2qGofVJWDqnZBVU0uevPYyYeSP8mkvwFnUeJA</recordid><startdate>20210504</startdate><enddate>20210504</enddate><creator>Johnsen, Pål V</creator><creator>Riemer-Sørensen, Signe</creator><creator>DeWan, Andrew Thomas</creator><creator>Cahill, Megan E</creator><creator>Langaas, Mette</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2599-7914</orcidid></search><sort><creationdate>20210504</creationdate><title>A new method for exploring gene-gene and gene-environment interactions in GWAS with tree ensemble methods and SHAP values</title><author>Johnsen, Pål V ; Riemer-Sørensen, Signe ; DeWan, Andrew Thomas ; Cahill, Megan E ; Langaas, Mette</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-6247f6c4534a744a85880dfdbed87e89d09787e9acce1d56aee56efd61a15dd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biobanks</topic><topic>Gene expression</topic><topic>Gene-Environment Interaction</topic><topic>Genes</topic><topic>Gene–gene and gene–environment interactions</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genotype & phenotype</topic><topic>GWAS</topic><topic>Machine learning</topic><topic>Methodology</topic><topic>Methods</topic><topic>Model explainability</topic><topic>Obesity</topic><topic>Phenotypes</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Power</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>SHAP</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Tree ensemble models</topic><topic>Trees</topic><topic>XGBoost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnsen, Pål V</creatorcontrib><creatorcontrib>Riemer-Sørensen, Signe</creatorcontrib><creatorcontrib>DeWan, Andrew Thomas</creatorcontrib><creatorcontrib>Cahill, Megan E</creatorcontrib><creatorcontrib>Langaas, Mette</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnsen, Pål V</au><au>Riemer-Sørensen, Signe</au><au>DeWan, Andrew Thomas</au><au>Cahill, Megan E</au><au>Langaas, Mette</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new method for exploring gene-gene and gene-environment interactions in GWAS with tree ensemble methods and SHAP values</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2021-05-04</date><risdate>2021</risdate><volume>22</volume><issue>1</issue><spage>230</spage><epage>230</epage><pages>230-230</pages><artnum>230</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>The identification of gene-gene and gene-environment interactions in genome-wide association studies is challenging due to the unknown nature of the interactions and the overwhelmingly large number of possible combinations. Parametric regression models are suitable to look for prespecified interactions. Nonparametric models such as tree ensemble models, with the ability to detect any unspecified interaction, have previously been difficult to interpret. However, with the development of methods for model explainability, it is now possible to interpret tree ensemble models efficiently and with a strong theoretical basis.
We propose a tree ensemble- and SHAP-based method for identifying as well as interpreting potential gene-gene and gene-environment interactions on large-scale biobank data. A set of independent cross-validation runs are used to implicitly investigate the whole genome. We apply and evaluate the method using data from the UK Biobank with obesity as the phenotype. The results are in line with previous research on obesity as we identify top SNPs previously associated with obesity. We further demonstrate how to interpret and visualize interaction candidates.
The new method identifies interaction candidates otherwise not detected with parametric regression models. However, further research is needed to evaluate the uncertainties of these candidates. The method can be applied to large-scale biobanks with high-dimensional data.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>33947323</pmid><doi>10.1186/s12859-021-04041-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2599-7914</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2021-05, Vol.22 (1), p.230-230, Article 230 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3f5d82b45d10430facb8a0016a07d9b6 |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms Analysis Biobanks Gene expression Gene-Environment Interaction Genes Gene–gene and gene–environment interactions Genome-wide association studies Genome-Wide Association Study Genomes Genotype & phenotype GWAS Machine learning Methodology Methods Model explainability Obesity Phenotypes Polymorphism, Single Nucleotide Power Regression analysis Regression models SHAP Single nucleotide polymorphisms Single-nucleotide polymorphism Tree ensemble models Trees XGBoost |
title | A new method for exploring gene-gene and gene-environment interactions in GWAS with tree ensemble methods and SHAP values |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20method%20for%20exploring%20gene-gene%20and%20gene-environment%20interactions%20in%20GWAS%20with%20tree%20ensemble%20methods%20and%20SHAP%20values&rft.jtitle=BMC%20bioinformatics&rft.au=Johnsen,%20P%C3%A5l%20V&rft.date=2021-05-04&rft.volume=22&rft.issue=1&rft.spage=230&rft.epage=230&rft.pages=230-230&rft.artnum=230&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-021-04041-7&rft_dat=%3Cgale_doaj_%3EA661432908%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c597t-6247f6c4534a744a85880dfdbed87e89d09787e9acce1d56aee56efd61a15dd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528905031&rft_id=info:pmid/33947323&rft_galeid=A661432908&rfr_iscdi=true |