Loading…
Optimization of In-Motion EV Charging Infrastructure for Power Systems Using Generative Adversarial Network-Based Distributionally Robust Techniques
This paper presents an innovative optimization framework for the co-management of dynamic electric vehicle (EV) charging lanes and power distribution networks, addressing grid stability amidst fluctuating EV charging demands. Integrating generative adversarial networks (GANs) and distributionally ro...
Saved in:
Published in: | Energies (Basel) 2025-01, Vol.18 (2), p.297 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c250t-46f9933fbf365fbabe77c2af8c84531e19471fe0e2588bb75295989d8ce28f123 |
container_end_page | |
container_issue | 2 |
container_start_page | 297 |
container_title | Energies (Basel) |
container_volume | 18 |
creator | Hua, Dong Yan, Peifeng Liu, Suisheng Lin, Qinglin Cui, Peiyi Li, Qian |
description | This paper presents an innovative optimization framework for the co-management of dynamic electric vehicle (EV) charging lanes and power distribution networks, addressing grid stability amidst fluctuating EV charging demands. Integrating generative adversarial networks (GANs) and distributionally robust optimization (DRO), the framework models uncertainties in traffic flow and renewable energy generation, optimizing system performance under worst-case conditions to mitigate risks of grid instability. Applied to a highway with eight dynamic charging lanes (500 kW per lane), serving up to 50 EVs simultaneously, the framework balances energy contributions from 15 renewable generators (60% of the mix) and 10 non-renewable generators. Simulation results highlight its effectiveness, maintaining grid stability with voltage deviations within 0.02 p.u., reducing energy losses to under 0.8 MW during peak traffic (1500 vehicles per hour), and achieving 95% lane utilization. Dynamic charging enabled EV users to save USD 0.08 per kilometer through reduced stationary charging downtime, optimized travel efficiency, and lower energy costs. Additionally, the system minimizes maintenance costs by optimizing lane and grid reliability. This study underscores the potential of GAN-based DRO methodologies to enhance the efficiency of power grids supporting dynamic EV charging, offering scalable solutions for diverse regions and traffic scenarios. |
doi_str_mv | 10.3390/en18020297 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3f5e4c2fb1fc4641bb450c777440b722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3f5e4c2fb1fc4641bb450c777440b722</doaj_id><sourcerecordid>3159623932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-46f9933fbf365fbabe77c2af8c84531e19471fe0e2588bb75295989d8ce28f123</originalsourceid><addsrcrecordid>eNpNkd1u1DAQhSMEElXpDU9giTukgP8Sx5dlactKhSJoubVs73jrJRsvY6fV8hx94CZdBMzN_OjoOxqdqnrN6DshNH0PA-sop1yrZ9UR07qtGVXi-X_zy-ok5w2dSggmhDiqHq52JW7jb1tiGkgKZDnUn9PTcvaDLG4truOwnq4BbS44-jIikJCQfE33gOT7PhfYZnKTZ9kFDIAT6g7I6eoOMFuMtidfoNwn_Fl_sBlW5GOcQNGNs4nt-z35ltyYC7kGfzvEXyPkV9WLYPsMJ3_6cXVzfna9-FRfXl0sF6eXtecNLbVsg9ZCBBdE2wRnHSjluQ2d72QjGDAtFQtAgTdd55xquG50p1edB94FxsVxtTxwV8luzA7j1uLeJBvN0yHh2lgs0fdgRGhAeh4cC162kjknG-qVUlJSp_jMenNg7TDNPxSzSSNOD2YjWKNbLrSYVW8PKo8pZ4Tw15VRM4do_oUoHgFqbZDe</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3159623932</pqid></control><display><type>article</type><title>Optimization of In-Motion EV Charging Infrastructure for Power Systems Using Generative Adversarial Network-Based Distributionally Robust Techniques</title><source>Publicly Available Content (ProQuest)</source><creator>Hua, Dong ; Yan, Peifeng ; Liu, Suisheng ; Lin, Qinglin ; Cui, Peiyi ; Li, Qian</creator><creatorcontrib>Hua, Dong ; Yan, Peifeng ; Liu, Suisheng ; Lin, Qinglin ; Cui, Peiyi ; Li, Qian</creatorcontrib><description>This paper presents an innovative optimization framework for the co-management of dynamic electric vehicle (EV) charging lanes and power distribution networks, addressing grid stability amidst fluctuating EV charging demands. Integrating generative adversarial networks (GANs) and distributionally robust optimization (DRO), the framework models uncertainties in traffic flow and renewable energy generation, optimizing system performance under worst-case conditions to mitigate risks of grid instability. Applied to a highway with eight dynamic charging lanes (500 kW per lane), serving up to 50 EVs simultaneously, the framework balances energy contributions from 15 renewable generators (60% of the mix) and 10 non-renewable generators. Simulation results highlight its effectiveness, maintaining grid stability with voltage deviations within 0.02 p.u., reducing energy losses to under 0.8 MW during peak traffic (1500 vehicles per hour), and achieving 95% lane utilization. Dynamic charging enabled EV users to save USD 0.08 per kilometer through reduced stationary charging downtime, optimized travel efficiency, and lower energy costs. Additionally, the system minimizes maintenance costs by optimizing lane and grid reliability. This study underscores the potential of GAN-based DRO methodologies to enhance the efficiency of power grids supporting dynamic EV charging, offering scalable solutions for diverse regions and traffic scenarios.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en18020297</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Demand side management ; distributionally robust optimization (DRO) ; dynamic charging lanes ; electric vehicle charging ; Electric vehicles ; Energy consumption ; Energy resources ; generative adversarial networks (GAN) ; Infrastructure ; Optimization techniques ; power distribution optimization ; Power supply ; renewable energy integration ; Renewable resources ; Roads & highways ; Solar energy ; Solar farms ; Supply & demand ; Traffic flow</subject><ispartof>Energies (Basel), 2025-01, Vol.18 (2), p.297</ispartof><rights>2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-46f9933fbf365fbabe77c2af8c84531e19471fe0e2588bb75295989d8ce28f123</cites><orcidid>0009-0004-1263-0461 ; 0009-0003-9153-6766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3159623932/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3159623932?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25730,27900,27901,36988,44565,75095</link.rule.ids></links><search><creatorcontrib>Hua, Dong</creatorcontrib><creatorcontrib>Yan, Peifeng</creatorcontrib><creatorcontrib>Liu, Suisheng</creatorcontrib><creatorcontrib>Lin, Qinglin</creatorcontrib><creatorcontrib>Cui, Peiyi</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><title>Optimization of In-Motion EV Charging Infrastructure for Power Systems Using Generative Adversarial Network-Based Distributionally Robust Techniques</title><title>Energies (Basel)</title><description>This paper presents an innovative optimization framework for the co-management of dynamic electric vehicle (EV) charging lanes and power distribution networks, addressing grid stability amidst fluctuating EV charging demands. Integrating generative adversarial networks (GANs) and distributionally robust optimization (DRO), the framework models uncertainties in traffic flow and renewable energy generation, optimizing system performance under worst-case conditions to mitigate risks of grid instability. Applied to a highway with eight dynamic charging lanes (500 kW per lane), serving up to 50 EVs simultaneously, the framework balances energy contributions from 15 renewable generators (60% of the mix) and 10 non-renewable generators. Simulation results highlight its effectiveness, maintaining grid stability with voltage deviations within 0.02 p.u., reducing energy losses to under 0.8 MW during peak traffic (1500 vehicles per hour), and achieving 95% lane utilization. Dynamic charging enabled EV users to save USD 0.08 per kilometer through reduced stationary charging downtime, optimized travel efficiency, and lower energy costs. Additionally, the system minimizes maintenance costs by optimizing lane and grid reliability. This study underscores the potential of GAN-based DRO methodologies to enhance the efficiency of power grids supporting dynamic EV charging, offering scalable solutions for diverse regions and traffic scenarios.</description><subject>Alternative energy sources</subject><subject>Demand side management</subject><subject>distributionally robust optimization (DRO)</subject><subject>dynamic charging lanes</subject><subject>electric vehicle charging</subject><subject>Electric vehicles</subject><subject>Energy consumption</subject><subject>Energy resources</subject><subject>generative adversarial networks (GAN)</subject><subject>Infrastructure</subject><subject>Optimization techniques</subject><subject>power distribution optimization</subject><subject>Power supply</subject><subject>renewable energy integration</subject><subject>Renewable resources</subject><subject>Roads & highways</subject><subject>Solar energy</subject><subject>Solar farms</subject><subject>Supply & demand</subject><subject>Traffic flow</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1u1DAQhSMEElXpDU9giTukgP8Sx5dlactKhSJoubVs73jrJRsvY6fV8hx94CZdBMzN_OjoOxqdqnrN6DshNH0PA-sop1yrZ9UR07qtGVXi-X_zy-ok5w2dSggmhDiqHq52JW7jb1tiGkgKZDnUn9PTcvaDLG4truOwnq4BbS44-jIikJCQfE33gOT7PhfYZnKTZ9kFDIAT6g7I6eoOMFuMtidfoNwn_Fl_sBlW5GOcQNGNs4nt-z35ltyYC7kGfzvEXyPkV9WLYPsMJ3_6cXVzfna9-FRfXl0sF6eXtecNLbVsg9ZCBBdE2wRnHSjluQ2d72QjGDAtFQtAgTdd55xquG50p1edB94FxsVxtTxwV8luzA7j1uLeJBvN0yHh2lgs0fdgRGhAeh4cC162kjknG-qVUlJSp_jMenNg7TDNPxSzSSNOD2YjWKNbLrSYVW8PKo8pZ4Tw15VRM4do_oUoHgFqbZDe</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Hua, Dong</creator><creator>Yan, Peifeng</creator><creator>Liu, Suisheng</creator><creator>Lin, Qinglin</creator><creator>Cui, Peiyi</creator><creator>Li, Qian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-1263-0461</orcidid><orcidid>https://orcid.org/0009-0003-9153-6766</orcidid></search><sort><creationdate>20250101</creationdate><title>Optimization of In-Motion EV Charging Infrastructure for Power Systems Using Generative Adversarial Network-Based Distributionally Robust Techniques</title><author>Hua, Dong ; Yan, Peifeng ; Liu, Suisheng ; Lin, Qinglin ; Cui, Peiyi ; Li, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-46f9933fbf365fbabe77c2af8c84531e19471fe0e2588bb75295989d8ce28f123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Alternative energy sources</topic><topic>Demand side management</topic><topic>distributionally robust optimization (DRO)</topic><topic>dynamic charging lanes</topic><topic>electric vehicle charging</topic><topic>Electric vehicles</topic><topic>Energy consumption</topic><topic>Energy resources</topic><topic>generative adversarial networks (GAN)</topic><topic>Infrastructure</topic><topic>Optimization techniques</topic><topic>power distribution optimization</topic><topic>Power supply</topic><topic>renewable energy integration</topic><topic>Renewable resources</topic><topic>Roads & highways</topic><topic>Solar energy</topic><topic>Solar farms</topic><topic>Supply & demand</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Dong</creatorcontrib><creatorcontrib>Yan, Peifeng</creatorcontrib><creatorcontrib>Liu, Suisheng</creatorcontrib><creatorcontrib>Lin, Qinglin</creatorcontrib><creatorcontrib>Cui, Peiyi</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Dong</au><au>Yan, Peifeng</au><au>Liu, Suisheng</au><au>Lin, Qinglin</au><au>Cui, Peiyi</au><au>Li, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of In-Motion EV Charging Infrastructure for Power Systems Using Generative Adversarial Network-Based Distributionally Robust Techniques</atitle><jtitle>Energies (Basel)</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>18</volume><issue>2</issue><spage>297</spage><pages>297-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>This paper presents an innovative optimization framework for the co-management of dynamic electric vehicle (EV) charging lanes and power distribution networks, addressing grid stability amidst fluctuating EV charging demands. Integrating generative adversarial networks (GANs) and distributionally robust optimization (DRO), the framework models uncertainties in traffic flow and renewable energy generation, optimizing system performance under worst-case conditions to mitigate risks of grid instability. Applied to a highway with eight dynamic charging lanes (500 kW per lane), serving up to 50 EVs simultaneously, the framework balances energy contributions from 15 renewable generators (60% of the mix) and 10 non-renewable generators. Simulation results highlight its effectiveness, maintaining grid stability with voltage deviations within 0.02 p.u., reducing energy losses to under 0.8 MW during peak traffic (1500 vehicles per hour), and achieving 95% lane utilization. Dynamic charging enabled EV users to save USD 0.08 per kilometer through reduced stationary charging downtime, optimized travel efficiency, and lower energy costs. Additionally, the system minimizes maintenance costs by optimizing lane and grid reliability. This study underscores the potential of GAN-based DRO methodologies to enhance the efficiency of power grids supporting dynamic EV charging, offering scalable solutions for diverse regions and traffic scenarios.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en18020297</doi><orcidid>https://orcid.org/0009-0004-1263-0461</orcidid><orcidid>https://orcid.org/0009-0003-9153-6766</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2025-01, Vol.18 (2), p.297 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3f5e4c2fb1fc4641bb450c777440b722 |
source | Publicly Available Content (ProQuest) |
subjects | Alternative energy sources Demand side management distributionally robust optimization (DRO) dynamic charging lanes electric vehicle charging Electric vehicles Energy consumption Energy resources generative adversarial networks (GAN) Infrastructure Optimization techniques power distribution optimization Power supply renewable energy integration Renewable resources Roads & highways Solar energy Solar farms Supply & demand Traffic flow |
title | Optimization of In-Motion EV Charging Infrastructure for Power Systems Using Generative Adversarial Network-Based Distributionally Robust Techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T18%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20In-Motion%20EV%20Charging%20Infrastructure%20for%20Power%20Systems%20Using%20Generative%20Adversarial%20Network-Based%20Distributionally%20Robust%20Techniques&rft.jtitle=Energies%20(Basel)&rft.au=Hua,%20Dong&rft.date=2025-01-01&rft.volume=18&rft.issue=2&rft.spage=297&rft.pages=297-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en18020297&rft_dat=%3Cproquest_doaj_%3E3159623932%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c250t-46f9933fbf365fbabe77c2af8c84531e19471fe0e2588bb75295989d8ce28f123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3159623932&rft_id=info:pmid/&rfr_iscdi=true |