Loading…

Optimization of In-Motion EV Charging Infrastructure for Power Systems Using Generative Adversarial Network-Based Distributionally Robust Techniques

This paper presents an innovative optimization framework for the co-management of dynamic electric vehicle (EV) charging lanes and power distribution networks, addressing grid stability amidst fluctuating EV charging demands. Integrating generative adversarial networks (GANs) and distributionally ro...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2025-01, Vol.18 (2), p.297
Main Authors: Hua, Dong, Yan, Peifeng, Liu, Suisheng, Lin, Qinglin, Cui, Peiyi, Li, Qian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c250t-46f9933fbf365fbabe77c2af8c84531e19471fe0e2588bb75295989d8ce28f123
container_end_page
container_issue 2
container_start_page 297
container_title Energies (Basel)
container_volume 18
creator Hua, Dong
Yan, Peifeng
Liu, Suisheng
Lin, Qinglin
Cui, Peiyi
Li, Qian
description This paper presents an innovative optimization framework for the co-management of dynamic electric vehicle (EV) charging lanes and power distribution networks, addressing grid stability amidst fluctuating EV charging demands. Integrating generative adversarial networks (GANs) and distributionally robust optimization (DRO), the framework models uncertainties in traffic flow and renewable energy generation, optimizing system performance under worst-case conditions to mitigate risks of grid instability. Applied to a highway with eight dynamic charging lanes (500 kW per lane), serving up to 50 EVs simultaneously, the framework balances energy contributions from 15 renewable generators (60% of the mix) and 10 non-renewable generators. Simulation results highlight its effectiveness, maintaining grid stability with voltage deviations within 0.02 p.u., reducing energy losses to under 0.8 MW during peak traffic (1500 vehicles per hour), and achieving 95% lane utilization. Dynamic charging enabled EV users to save USD 0.08 per kilometer through reduced stationary charging downtime, optimized travel efficiency, and lower energy costs. Additionally, the system minimizes maintenance costs by optimizing lane and grid reliability. This study underscores the potential of GAN-based DRO methodologies to enhance the efficiency of power grids supporting dynamic EV charging, offering scalable solutions for diverse regions and traffic scenarios.
doi_str_mv 10.3390/en18020297
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3f5e4c2fb1fc4641bb450c777440b722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3f5e4c2fb1fc4641bb450c777440b722</doaj_id><sourcerecordid>3159623932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-46f9933fbf365fbabe77c2af8c84531e19471fe0e2588bb75295989d8ce28f123</originalsourceid><addsrcrecordid>eNpNkd1u1DAQhSMEElXpDU9giTukgP8Sx5dlactKhSJoubVs73jrJRsvY6fV8hx94CZdBMzN_OjoOxqdqnrN6DshNH0PA-sop1yrZ9UR07qtGVXi-X_zy-ok5w2dSggmhDiqHq52JW7jb1tiGkgKZDnUn9PTcvaDLG4truOwnq4BbS44-jIikJCQfE33gOT7PhfYZnKTZ9kFDIAT6g7I6eoOMFuMtidfoNwn_Fl_sBlW5GOcQNGNs4nt-z35ltyYC7kGfzvEXyPkV9WLYPsMJ3_6cXVzfna9-FRfXl0sF6eXtecNLbVsg9ZCBBdE2wRnHSjluQ2d72QjGDAtFQtAgTdd55xquG50p1edB94FxsVxtTxwV8luzA7j1uLeJBvN0yHh2lgs0fdgRGhAeh4cC162kjknG-qVUlJSp_jMenNg7TDNPxSzSSNOD2YjWKNbLrSYVW8PKo8pZ4Tw15VRM4do_oUoHgFqbZDe</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3159623932</pqid></control><display><type>article</type><title>Optimization of In-Motion EV Charging Infrastructure for Power Systems Using Generative Adversarial Network-Based Distributionally Robust Techniques</title><source>Publicly Available Content (ProQuest)</source><creator>Hua, Dong ; Yan, Peifeng ; Liu, Suisheng ; Lin, Qinglin ; Cui, Peiyi ; Li, Qian</creator><creatorcontrib>Hua, Dong ; Yan, Peifeng ; Liu, Suisheng ; Lin, Qinglin ; Cui, Peiyi ; Li, Qian</creatorcontrib><description>This paper presents an innovative optimization framework for the co-management of dynamic electric vehicle (EV) charging lanes and power distribution networks, addressing grid stability amidst fluctuating EV charging demands. Integrating generative adversarial networks (GANs) and distributionally robust optimization (DRO), the framework models uncertainties in traffic flow and renewable energy generation, optimizing system performance under worst-case conditions to mitigate risks of grid instability. Applied to a highway with eight dynamic charging lanes (500 kW per lane), serving up to 50 EVs simultaneously, the framework balances energy contributions from 15 renewable generators (60% of the mix) and 10 non-renewable generators. Simulation results highlight its effectiveness, maintaining grid stability with voltage deviations within 0.02 p.u., reducing energy losses to under 0.8 MW during peak traffic (1500 vehicles per hour), and achieving 95% lane utilization. Dynamic charging enabled EV users to save USD 0.08 per kilometer through reduced stationary charging downtime, optimized travel efficiency, and lower energy costs. Additionally, the system minimizes maintenance costs by optimizing lane and grid reliability. This study underscores the potential of GAN-based DRO methodologies to enhance the efficiency of power grids supporting dynamic EV charging, offering scalable solutions for diverse regions and traffic scenarios.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en18020297</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Demand side management ; distributionally robust optimization (DRO) ; dynamic charging lanes ; electric vehicle charging ; Electric vehicles ; Energy consumption ; Energy resources ; generative adversarial networks (GAN) ; Infrastructure ; Optimization techniques ; power distribution optimization ; Power supply ; renewable energy integration ; Renewable resources ; Roads &amp; highways ; Solar energy ; Solar farms ; Supply &amp; demand ; Traffic flow</subject><ispartof>Energies (Basel), 2025-01, Vol.18 (2), p.297</ispartof><rights>2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-46f9933fbf365fbabe77c2af8c84531e19471fe0e2588bb75295989d8ce28f123</cites><orcidid>0009-0004-1263-0461 ; 0009-0003-9153-6766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3159623932/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3159623932?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25730,27900,27901,36988,44565,75095</link.rule.ids></links><search><creatorcontrib>Hua, Dong</creatorcontrib><creatorcontrib>Yan, Peifeng</creatorcontrib><creatorcontrib>Liu, Suisheng</creatorcontrib><creatorcontrib>Lin, Qinglin</creatorcontrib><creatorcontrib>Cui, Peiyi</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><title>Optimization of In-Motion EV Charging Infrastructure for Power Systems Using Generative Adversarial Network-Based Distributionally Robust Techniques</title><title>Energies (Basel)</title><description>This paper presents an innovative optimization framework for the co-management of dynamic electric vehicle (EV) charging lanes and power distribution networks, addressing grid stability amidst fluctuating EV charging demands. Integrating generative adversarial networks (GANs) and distributionally robust optimization (DRO), the framework models uncertainties in traffic flow and renewable energy generation, optimizing system performance under worst-case conditions to mitigate risks of grid instability. Applied to a highway with eight dynamic charging lanes (500 kW per lane), serving up to 50 EVs simultaneously, the framework balances energy contributions from 15 renewable generators (60% of the mix) and 10 non-renewable generators. Simulation results highlight its effectiveness, maintaining grid stability with voltage deviations within 0.02 p.u., reducing energy losses to under 0.8 MW during peak traffic (1500 vehicles per hour), and achieving 95% lane utilization. Dynamic charging enabled EV users to save USD 0.08 per kilometer through reduced stationary charging downtime, optimized travel efficiency, and lower energy costs. Additionally, the system minimizes maintenance costs by optimizing lane and grid reliability. This study underscores the potential of GAN-based DRO methodologies to enhance the efficiency of power grids supporting dynamic EV charging, offering scalable solutions for diverse regions and traffic scenarios.</description><subject>Alternative energy sources</subject><subject>Demand side management</subject><subject>distributionally robust optimization (DRO)</subject><subject>dynamic charging lanes</subject><subject>electric vehicle charging</subject><subject>Electric vehicles</subject><subject>Energy consumption</subject><subject>Energy resources</subject><subject>generative adversarial networks (GAN)</subject><subject>Infrastructure</subject><subject>Optimization techniques</subject><subject>power distribution optimization</subject><subject>Power supply</subject><subject>renewable energy integration</subject><subject>Renewable resources</subject><subject>Roads &amp; highways</subject><subject>Solar energy</subject><subject>Solar farms</subject><subject>Supply &amp; demand</subject><subject>Traffic flow</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1u1DAQhSMEElXpDU9giTukgP8Sx5dlactKhSJoubVs73jrJRsvY6fV8hx94CZdBMzN_OjoOxqdqnrN6DshNH0PA-sop1yrZ9UR07qtGVXi-X_zy-ok5w2dSggmhDiqHq52JW7jb1tiGkgKZDnUn9PTcvaDLG4truOwnq4BbS44-jIikJCQfE33gOT7PhfYZnKTZ9kFDIAT6g7I6eoOMFuMtidfoNwn_Fl_sBlW5GOcQNGNs4nt-z35ltyYC7kGfzvEXyPkV9WLYPsMJ3_6cXVzfna9-FRfXl0sF6eXtecNLbVsg9ZCBBdE2wRnHSjluQ2d72QjGDAtFQtAgTdd55xquG50p1edB94FxsVxtTxwV8luzA7j1uLeJBvN0yHh2lgs0fdgRGhAeh4cC162kjknG-qVUlJSp_jMenNg7TDNPxSzSSNOD2YjWKNbLrSYVW8PKo8pZ4Tw15VRM4do_oUoHgFqbZDe</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Hua, Dong</creator><creator>Yan, Peifeng</creator><creator>Liu, Suisheng</creator><creator>Lin, Qinglin</creator><creator>Cui, Peiyi</creator><creator>Li, Qian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-1263-0461</orcidid><orcidid>https://orcid.org/0009-0003-9153-6766</orcidid></search><sort><creationdate>20250101</creationdate><title>Optimization of In-Motion EV Charging Infrastructure for Power Systems Using Generative Adversarial Network-Based Distributionally Robust Techniques</title><author>Hua, Dong ; Yan, Peifeng ; Liu, Suisheng ; Lin, Qinglin ; Cui, Peiyi ; Li, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-46f9933fbf365fbabe77c2af8c84531e19471fe0e2588bb75295989d8ce28f123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Alternative energy sources</topic><topic>Demand side management</topic><topic>distributionally robust optimization (DRO)</topic><topic>dynamic charging lanes</topic><topic>electric vehicle charging</topic><topic>Electric vehicles</topic><topic>Energy consumption</topic><topic>Energy resources</topic><topic>generative adversarial networks (GAN)</topic><topic>Infrastructure</topic><topic>Optimization techniques</topic><topic>power distribution optimization</topic><topic>Power supply</topic><topic>renewable energy integration</topic><topic>Renewable resources</topic><topic>Roads &amp; highways</topic><topic>Solar energy</topic><topic>Solar farms</topic><topic>Supply &amp; demand</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Dong</creatorcontrib><creatorcontrib>Yan, Peifeng</creatorcontrib><creatorcontrib>Liu, Suisheng</creatorcontrib><creatorcontrib>Lin, Qinglin</creatorcontrib><creatorcontrib>Cui, Peiyi</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Dong</au><au>Yan, Peifeng</au><au>Liu, Suisheng</au><au>Lin, Qinglin</au><au>Cui, Peiyi</au><au>Li, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of In-Motion EV Charging Infrastructure for Power Systems Using Generative Adversarial Network-Based Distributionally Robust Techniques</atitle><jtitle>Energies (Basel)</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>18</volume><issue>2</issue><spage>297</spage><pages>297-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>This paper presents an innovative optimization framework for the co-management of dynamic electric vehicle (EV) charging lanes and power distribution networks, addressing grid stability amidst fluctuating EV charging demands. Integrating generative adversarial networks (GANs) and distributionally robust optimization (DRO), the framework models uncertainties in traffic flow and renewable energy generation, optimizing system performance under worst-case conditions to mitigate risks of grid instability. Applied to a highway with eight dynamic charging lanes (500 kW per lane), serving up to 50 EVs simultaneously, the framework balances energy contributions from 15 renewable generators (60% of the mix) and 10 non-renewable generators. Simulation results highlight its effectiveness, maintaining grid stability with voltage deviations within 0.02 p.u., reducing energy losses to under 0.8 MW during peak traffic (1500 vehicles per hour), and achieving 95% lane utilization. Dynamic charging enabled EV users to save USD 0.08 per kilometer through reduced stationary charging downtime, optimized travel efficiency, and lower energy costs. Additionally, the system minimizes maintenance costs by optimizing lane and grid reliability. This study underscores the potential of GAN-based DRO methodologies to enhance the efficiency of power grids supporting dynamic EV charging, offering scalable solutions for diverse regions and traffic scenarios.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en18020297</doi><orcidid>https://orcid.org/0009-0004-1263-0461</orcidid><orcidid>https://orcid.org/0009-0003-9153-6766</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2025-01, Vol.18 (2), p.297
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3f5e4c2fb1fc4641bb450c777440b722
source Publicly Available Content (ProQuest)
subjects Alternative energy sources
Demand side management
distributionally robust optimization (DRO)
dynamic charging lanes
electric vehicle charging
Electric vehicles
Energy consumption
Energy resources
generative adversarial networks (GAN)
Infrastructure
Optimization techniques
power distribution optimization
Power supply
renewable energy integration
Renewable resources
Roads & highways
Solar energy
Solar farms
Supply & demand
Traffic flow
title Optimization of In-Motion EV Charging Infrastructure for Power Systems Using Generative Adversarial Network-Based Distributionally Robust Techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T18%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20In-Motion%20EV%20Charging%20Infrastructure%20for%20Power%20Systems%20Using%20Generative%20Adversarial%20Network-Based%20Distributionally%20Robust%20Techniques&rft.jtitle=Energies%20(Basel)&rft.au=Hua,%20Dong&rft.date=2025-01-01&rft.volume=18&rft.issue=2&rft.spage=297&rft.pages=297-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en18020297&rft_dat=%3Cproquest_doaj_%3E3159623932%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c250t-46f9933fbf365fbabe77c2af8c84531e19471fe0e2588bb75295989d8ce28f123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3159623932&rft_id=info:pmid/&rfr_iscdi=true