Loading…

Molecular dynamics simulations reveal how vinculin refolds partially unfolded talin rod helices to stabilize them against mechanical force

Vinculin binds to specific sites of mechanically unfolded talin rod domains to reinforce the coupling of the cell's exterior to its force generation machinery. Force-dependent vinculin-talin complexation and dissociation was previously observed as contraction or extension of the unfolded talin...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2024-08, Vol.20 (8), p.e1012341
Main Authors: Mykuliak, Vasyl V, Rahikainen, Rolle, Ball, Neil J, Bussi, Giovanni, Goult, Benjamin T, Hytönen, Vesa P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c489t-2404928348b4b58a3831ba792ab7f0fc5b593c9862b5d346a051cd1ab09e0b763
container_end_page
container_issue 8
container_start_page e1012341
container_title PLoS computational biology
container_volume 20
creator Mykuliak, Vasyl V
Rahikainen, Rolle
Ball, Neil J
Bussi, Giovanni
Goult, Benjamin T
Hytönen, Vesa P
description Vinculin binds to specific sites of mechanically unfolded talin rod domains to reinforce the coupling of the cell's exterior to its force generation machinery. Force-dependent vinculin-talin complexation and dissociation was previously observed as contraction or extension of the unfolded talin domains respectively using magnetic tweezers. However, the structural mechanism underlying vinculin recognition of unfolded vinculin binding sites (VBSs) in talin remains unknown. Using molecular dynamics simulations, we demonstrate that a VBS dynamically refolds under force, and that vinculin can recognize and bind to partially unfolded VBS states. Vinculin binding enables refolding of the mechanically strained VBS and stabilizes its folded α-helical conformation, providing resistance against mechanical stress. Together, these results provide an understanding of a recognition mechanism of proteins unfolded by force and insight into the initial moments of how vinculin binds unfolded talin rod domains during the assembly of this mechanosensing meshwork.
doi_str_mv 10.1371/journal.pcbi.1012341
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3f62545f8996407aa000b77f36082b97</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A807061721</galeid><doaj_id>oai_doaj_org_article_3f62545f8996407aa000b77f36082b97</doaj_id><sourcerecordid>A807061721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-2404928348b4b58a3831ba792ab7f0fc5b593c9862b5d346a051cd1ab09e0b763</originalsourceid><addsrcrecordid>eNqVksuO0zAUhiMEYoaBN0DIEhtYtNhxbMcrNBpxqTSAxGVtHTtO68qxS-wUyiPw1LjTMppKbFAWsf5851Ny8lfVU4LnhAryah2nMYCfb4x2c4JJTRtyrzonjNGZoKy9f-d8Vj1KaY1xOUr-sDqjkhAsODuvfn-I3prJw4i6XYDBmYSSG0qQXQwJjXZrwaNV_IG2LhTQhZL10XcJbWDMDrzfoSnsE9uhDDdA7NDKemdsQjmilEE7735ZlFd2QLAEF1JGgzUrCM4UfR9HYx9XD3rwyT453i-qb2_ffL16P7v-9G5xdXk9M00r86xucCPrljatbjRrgbaUaBCyBi163BummaRGtrzWrKMNB8yI6QhoLC3WgtOLanHwdhHWajO6AcadiuDUTRDHpdp_mPFW0Z7XrGF9KyVvsADAuChETzluay1Fcb0-uDaTHmxnbMgj-BPp6ZPgVmoZt4oQSinGdTG8OBrG-H2yKavBJWO9h2DjlBTFEnNKJG8L-vyALqG8mys7L0qzx9VliwXmRNSkUPN_UOXqbPm7Mdjelfxk4OXJQGGy_ZmXMKWkFl8-_wf78ZRtDqwZY0qlNLdrIVjtK6yOFVb7CqtjhcvYs7srvR3621n6B0u478M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090631968</pqid></control><display><type>article</type><title>Molecular dynamics simulations reveal how vinculin refolds partially unfolded talin rod helices to stabilize them against mechanical force</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Mykuliak, Vasyl V ; Rahikainen, Rolle ; Ball, Neil J ; Bussi, Giovanni ; Goult, Benjamin T ; Hytönen, Vesa P</creator><contributor>Kasson, Peter M.</contributor><creatorcontrib>Mykuliak, Vasyl V ; Rahikainen, Rolle ; Ball, Neil J ; Bussi, Giovanni ; Goult, Benjamin T ; Hytönen, Vesa P ; Kasson, Peter M.</creatorcontrib><description>Vinculin binds to specific sites of mechanically unfolded talin rod domains to reinforce the coupling of the cell's exterior to its force generation machinery. Force-dependent vinculin-talin complexation and dissociation was previously observed as contraction or extension of the unfolded talin domains respectively using magnetic tweezers. However, the structural mechanism underlying vinculin recognition of unfolded vinculin binding sites (VBSs) in talin remains unknown. Using molecular dynamics simulations, we demonstrate that a VBS dynamically refolds under force, and that vinculin can recognize and bind to partially unfolded VBS states. Vinculin binding enables refolding of the mechanically strained VBS and stabilizes its folded α-helical conformation, providing resistance against mechanical stress. Together, these results provide an understanding of a recognition mechanism of proteins unfolded by force and insight into the initial moments of how vinculin binds unfolded talin rod domains during the assembly of this mechanosensing meshwork.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1012341</identifier><identifier>PMID: 39110765</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Binding Sites ; Biology and Life Sciences ; Humans ; Molecular dynamics ; Molecular Dynamics Simulation ; Physical Sciences ; Protein Binding ; Protein Folding ; Protein Unfolding ; Proteins ; Research and Analysis Methods ; Simulation methods ; Stress, Mechanical ; Talin - chemistry ; Talin - metabolism ; Vinculin - chemistry ; Vinculin - metabolism</subject><ispartof>PLoS computational biology, 2024-08, Vol.20 (8), p.e1012341</ispartof><rights>Copyright: © 2024 Mykuliak et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Mykuliak et al 2024 Mykuliak et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c489t-2404928348b4b58a3831ba792ab7f0fc5b593c9862b5d346a051cd1ab09e0b763</cites><orcidid>0000-0002-2522-9907 ; 0000-0002-3438-2807 ; 0000-0002-9357-1480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333002/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333002/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39110765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kasson, Peter M.</contributor><creatorcontrib>Mykuliak, Vasyl V</creatorcontrib><creatorcontrib>Rahikainen, Rolle</creatorcontrib><creatorcontrib>Ball, Neil J</creatorcontrib><creatorcontrib>Bussi, Giovanni</creatorcontrib><creatorcontrib>Goult, Benjamin T</creatorcontrib><creatorcontrib>Hytönen, Vesa P</creatorcontrib><title>Molecular dynamics simulations reveal how vinculin refolds partially unfolded talin rod helices to stabilize them against mechanical force</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Vinculin binds to specific sites of mechanically unfolded talin rod domains to reinforce the coupling of the cell's exterior to its force generation machinery. Force-dependent vinculin-talin complexation and dissociation was previously observed as contraction or extension of the unfolded talin domains respectively using magnetic tweezers. However, the structural mechanism underlying vinculin recognition of unfolded vinculin binding sites (VBSs) in talin remains unknown. Using molecular dynamics simulations, we demonstrate that a VBS dynamically refolds under force, and that vinculin can recognize and bind to partially unfolded VBS states. Vinculin binding enables refolding of the mechanically strained VBS and stabilizes its folded α-helical conformation, providing resistance against mechanical stress. Together, these results provide an understanding of a recognition mechanism of proteins unfolded by force and insight into the initial moments of how vinculin binds unfolded talin rod domains during the assembly of this mechanosensing meshwork.</description><subject>Binding Sites</subject><subject>Biology and Life Sciences</subject><subject>Humans</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Physical Sciences</subject><subject>Protein Binding</subject><subject>Protein Folding</subject><subject>Protein Unfolding</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Simulation methods</subject><subject>Stress, Mechanical</subject><subject>Talin - chemistry</subject><subject>Talin - metabolism</subject><subject>Vinculin - chemistry</subject><subject>Vinculin - metabolism</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVksuO0zAUhiMEYoaBN0DIEhtYtNhxbMcrNBpxqTSAxGVtHTtO68qxS-wUyiPw1LjTMppKbFAWsf5851Ny8lfVU4LnhAryah2nMYCfb4x2c4JJTRtyrzonjNGZoKy9f-d8Vj1KaY1xOUr-sDqjkhAsODuvfn-I3prJw4i6XYDBmYSSG0qQXQwJjXZrwaNV_IG2LhTQhZL10XcJbWDMDrzfoSnsE9uhDDdA7NDKemdsQjmilEE7735ZlFd2QLAEF1JGgzUrCM4UfR9HYx9XD3rwyT453i-qb2_ffL16P7v-9G5xdXk9M00r86xucCPrljatbjRrgbaUaBCyBi163BummaRGtrzWrKMNB8yI6QhoLC3WgtOLanHwdhHWajO6AcadiuDUTRDHpdp_mPFW0Z7XrGF9KyVvsADAuChETzluay1Fcb0-uDaTHmxnbMgj-BPp6ZPgVmoZt4oQSinGdTG8OBrG-H2yKavBJWO9h2DjlBTFEnNKJG8L-vyALqG8mys7L0qzx9VliwXmRNSkUPN_UOXqbPm7Mdjelfxk4OXJQGGy_ZmXMKWkFl8-_wf78ZRtDqwZY0qlNLdrIVjtK6yOFVb7CqtjhcvYs7srvR3621n6B0u478M</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Mykuliak, Vasyl V</creator><creator>Rahikainen, Rolle</creator><creator>Ball, Neil J</creator><creator>Bussi, Giovanni</creator><creator>Goult, Benjamin T</creator><creator>Hytönen, Vesa P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2522-9907</orcidid><orcidid>https://orcid.org/0000-0002-3438-2807</orcidid><orcidid>https://orcid.org/0000-0002-9357-1480</orcidid></search><sort><creationdate>20240807</creationdate><title>Molecular dynamics simulations reveal how vinculin refolds partially unfolded talin rod helices to stabilize them against mechanical force</title><author>Mykuliak, Vasyl V ; Rahikainen, Rolle ; Ball, Neil J ; Bussi, Giovanni ; Goult, Benjamin T ; Hytönen, Vesa P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-2404928348b4b58a3831ba792ab7f0fc5b593c9862b5d346a051cd1ab09e0b763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding Sites</topic><topic>Biology and Life Sciences</topic><topic>Humans</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Physical Sciences</topic><topic>Protein Binding</topic><topic>Protein Folding</topic><topic>Protein Unfolding</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Simulation methods</topic><topic>Stress, Mechanical</topic><topic>Talin - chemistry</topic><topic>Talin - metabolism</topic><topic>Vinculin - chemistry</topic><topic>Vinculin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mykuliak, Vasyl V</creatorcontrib><creatorcontrib>Rahikainen, Rolle</creatorcontrib><creatorcontrib>Ball, Neil J</creatorcontrib><creatorcontrib>Bussi, Giovanni</creatorcontrib><creatorcontrib>Goult, Benjamin T</creatorcontrib><creatorcontrib>Hytönen, Vesa P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mykuliak, Vasyl V</au><au>Rahikainen, Rolle</au><au>Ball, Neil J</au><au>Bussi, Giovanni</au><au>Goult, Benjamin T</au><au>Hytönen, Vesa P</au><au>Kasson, Peter M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics simulations reveal how vinculin refolds partially unfolded talin rod helices to stabilize them against mechanical force</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2024-08-07</date><risdate>2024</risdate><volume>20</volume><issue>8</issue><spage>e1012341</spage><pages>e1012341-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Vinculin binds to specific sites of mechanically unfolded talin rod domains to reinforce the coupling of the cell's exterior to its force generation machinery. Force-dependent vinculin-talin complexation and dissociation was previously observed as contraction or extension of the unfolded talin domains respectively using magnetic tweezers. However, the structural mechanism underlying vinculin recognition of unfolded vinculin binding sites (VBSs) in talin remains unknown. Using molecular dynamics simulations, we demonstrate that a VBS dynamically refolds under force, and that vinculin can recognize and bind to partially unfolded VBS states. Vinculin binding enables refolding of the mechanically strained VBS and stabilizes its folded α-helical conformation, providing resistance against mechanical stress. Together, these results provide an understanding of a recognition mechanism of proteins unfolded by force and insight into the initial moments of how vinculin binds unfolded talin rod domains during the assembly of this mechanosensing meshwork.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39110765</pmid><doi>10.1371/journal.pcbi.1012341</doi><tpages>e1012341</tpages><orcidid>https://orcid.org/0000-0002-2522-9907</orcidid><orcidid>https://orcid.org/0000-0002-3438-2807</orcidid><orcidid>https://orcid.org/0000-0002-9357-1480</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2024-08, Vol.20 (8), p.e1012341
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3f62545f8996407aa000b77f36082b97
source Open Access: PubMed Central; Publicly Available Content Database
subjects Binding Sites
Biology and Life Sciences
Humans
Molecular dynamics
Molecular Dynamics Simulation
Physical Sciences
Protein Binding
Protein Folding
Protein Unfolding
Proteins
Research and Analysis Methods
Simulation methods
Stress, Mechanical
Talin - chemistry
Talin - metabolism
Vinculin - chemistry
Vinculin - metabolism
title Molecular dynamics simulations reveal how vinculin refolds partially unfolded talin rod helices to stabilize them against mechanical force
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20simulations%20reveal%20how%20vinculin%20refolds%20partially%20unfolded%20talin%20rod%20helices%20to%20stabilize%20them%20against%20mechanical%20force&rft.jtitle=PLoS%20computational%20biology&rft.au=Mykuliak,%20Vasyl%20V&rft.date=2024-08-07&rft.volume=20&rft.issue=8&rft.spage=e1012341&rft.pages=e1012341-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1012341&rft_dat=%3Cgale_doaj_%3EA807061721%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-2404928348b4b58a3831ba792ab7f0fc5b593c9862b5d346a051cd1ab09e0b763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090631968&rft_id=info:pmid/39110765&rft_galeid=A807061721&rfr_iscdi=true