Loading…

The role of film composition and nanostructuration on the polyphenol sensor performance

The recent advances in the supramolecular control in nanostructured films have improved the performance of organic-based devices. However, the effect of different supramolecular arrangement on the sensor or biosensor performance is poorly studied yet. In this paper, we show the role of the compositi...

Full description

Saved in:
Bibliographic Details
Published in:AIMS materials science 2017-01, Vol.4 (1), p.27-42
Main Authors: Silva Martin, Cibely, Dassie Maximino, Mateus, Santos Pereira, Matheus, de Almeida Olivati, Clarissa, Alessio, Priscila
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The recent advances in the supramolecular control in nanostructured films have improved the performance of organic-based devices. However, the effect of different supramolecular arrangement on the sensor or biosensor performance is poorly studied yet. In this paper, we show the role of the composition and nanostructuration of the films on the impedance and voltammetric-based sensor performance to catechol detection. The films here studied were composed by a perylene derivative (PTCD-NH2) and a metallic phthalocyanine (FePc), using Langmuir-Blodgett (LB) and physical vapor deposition (PVD) techniques. The deposition technique and intrinsic properties of compounds showed influence on electrical and electrocatalytic responses. The PVD PTCD-NH2 shows the best sensor performance to the detection of catechol. Quantification of catechol contents in mate tea samples was also evaluated, and the results showed good agreement compared with Folin-Ciocalteu standard method for polyphenol detection.
ISSN:2372-0484
DOI:10.3934/matersci.2017.1.27