Loading…
Real-time arrhythmia detection using convolutional neural networks
Cardiovascular diseases, such as heart attack and congestive heart failure, are the leading cause of death both in the United States and worldwide. The current medical practice for diagnosing cardiovascular diseases is not suitable for long-term, out-of-hospital use. A key to long-term monitoring is...
Saved in:
Published in: | Frontiers in big data 2023-11, Vol.6, p.1270756-1270756 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-4d10d57018ec347d4495ecb8534780e75ebeb60c10f958764e2809cd439101573 |
container_end_page | 1270756 |
container_issue | |
container_start_page | 1270756 |
container_title | Frontiers in big data |
container_volume | 6 |
creator | Vu, Thong Petty, Tyler Yakut, Kemal Usman, Muhammad Xue, Wei Haas, Francis M Hirsh, Robert A Zhao, Xinghui |
description | Cardiovascular diseases, such as heart attack and congestive heart failure, are the leading cause of death both in the United States and worldwide. The current medical practice for diagnosing cardiovascular diseases is not suitable for long-term, out-of-hospital use. A key to long-term monitoring is the ability to detect abnormal cardiac rhythms, i.e., arrhythmia, in real-time. Most existing studies only focus on the accuracy of arrhythmia classification, instead of runtime performance of the workflow. In this paper, we present our work on supporting real-time arrhythmic detection using convolutional neural networks, which take images of electrocardiogram (ECG) segments as input, and classify the arrhythmia conditions. To support real-time processing, we have carried out extensive experiments and evaluated the computational cost of each step of the classification workflow. Our results show that it is feasible to achieve real-time arrhythmic detection using convolutional neural networks. To further demonstrate the generalizability of this approach, we used the trained model with processed data collected by a customized wearable sensor from a lab setting, and the results shown that our approach is highly accurate and efficient. This research provides the potentials to enable in-home real-time heart monitoring based on 2D image data, which opens up opportunities for integrating both machine learning and traditional diagnostic approaches. |
doi_str_mv | 10.3389/fdata.2023.1270756 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3f7963ff0c014b2096dc9fe26c2129d0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3f7963ff0c014b2096dc9fe26c2129d0</doaj_id><sourcerecordid>2899372897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-4d10d57018ec347d4495ecb8534780e75ebeb60c10f958764e2809cd439101573</originalsourceid><addsrcrecordid>eNpVkctu1TAQQC0EolXpD7BAWbLJZfyMvUJQ0YdUCQm1EjvLsSf3piRxsZ2i_n1zH1TtxuMZe47HOoR8pLDiXJsvXXDFrRgwvqKsgUaqN-SYKSZqA-b32xf7I3Ka8x0AMAmSUv6eHHENUgtQx-T7L3RDXfoRK5fS5rFsxt5VAQv60sepmnM_rSsfp4c4zNuKG6oJ57QL5V9Mf_IH8q5zQ8bTQzwht-c_bs4u6-ufF1dn365rLxiUWgQKQTZANXoumiCEkehbLZdEAzYSW2wVeAqdkbpRApkG44PghgKVDT8hV3tuiO7O3qd-dOnRRtfbXSGmtXWp9H5Ay7vGKN514IGKloFRwZsOmfKMMhNgYX3ds-7ndsTgcSrLl15BX59M_cau44OloIxSQi2EzwdCin9nzMWOffY4DG7COGfLtDG8Wdbt4Gx_1aeYc8Lu-R0KdivT7mTarUx7kLk0fXo54XPLf3X8CRGSm8w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899372897</pqid></control><display><type>article</type><title>Real-time arrhythmia detection using convolutional neural networks</title><source>PubMed Central</source><creator>Vu, Thong ; Petty, Tyler ; Yakut, Kemal ; Usman, Muhammad ; Xue, Wei ; Haas, Francis M ; Hirsh, Robert A ; Zhao, Xinghui</creator><creatorcontrib>Vu, Thong ; Petty, Tyler ; Yakut, Kemal ; Usman, Muhammad ; Xue, Wei ; Haas, Francis M ; Hirsh, Robert A ; Zhao, Xinghui</creatorcontrib><description>Cardiovascular diseases, such as heart attack and congestive heart failure, are the leading cause of death both in the United States and worldwide. The current medical practice for diagnosing cardiovascular diseases is not suitable for long-term, out-of-hospital use. A key to long-term monitoring is the ability to detect abnormal cardiac rhythms, i.e., arrhythmia, in real-time. Most existing studies only focus on the accuracy of arrhythmia classification, instead of runtime performance of the workflow. In this paper, we present our work on supporting real-time arrhythmic detection using convolutional neural networks, which take images of electrocardiogram (ECG) segments as input, and classify the arrhythmia conditions. To support real-time processing, we have carried out extensive experiments and evaluated the computational cost of each step of the classification workflow. Our results show that it is feasible to achieve real-time arrhythmic detection using convolutional neural networks. To further demonstrate the generalizability of this approach, we used the trained model with processed data collected by a customized wearable sensor from a lab setting, and the results shown that our approach is highly accurate and efficient. This research provides the potentials to enable in-home real-time heart monitoring based on 2D image data, which opens up opportunities for integrating both machine learning and traditional diagnostic approaches.</description><identifier>ISSN: 2624-909X</identifier><identifier>EISSN: 2624-909X</identifier><identifier>DOI: 10.3389/fdata.2023.1270756</identifier><identifier>PMID: 38058406</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>anomaly detection ; Big Data ; convolutional neural networks ; machine learning ; smart health</subject><ispartof>Frontiers in big data, 2023-11, Vol.6, p.1270756-1270756</ispartof><rights>Copyright © 2023 Vu, Petty, Yakut, Usman, Xue, Haas, Hirsh and Zhao.</rights><rights>Copyright © 2023 Vu, Petty, Yakut, Usman, Xue, Haas, Hirsh and Zhao. 2023 Vu, Petty, Yakut, Usman, Xue, Haas, Hirsh and Zhao</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c420t-4d10d57018ec347d4495ecb8534780e75ebeb60c10f958764e2809cd439101573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696646/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696646/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38058406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vu, Thong</creatorcontrib><creatorcontrib>Petty, Tyler</creatorcontrib><creatorcontrib>Yakut, Kemal</creatorcontrib><creatorcontrib>Usman, Muhammad</creatorcontrib><creatorcontrib>Xue, Wei</creatorcontrib><creatorcontrib>Haas, Francis M</creatorcontrib><creatorcontrib>Hirsh, Robert A</creatorcontrib><creatorcontrib>Zhao, Xinghui</creatorcontrib><title>Real-time arrhythmia detection using convolutional neural networks</title><title>Frontiers in big data</title><addtitle>Front Big Data</addtitle><description>Cardiovascular diseases, such as heart attack and congestive heart failure, are the leading cause of death both in the United States and worldwide. The current medical practice for diagnosing cardiovascular diseases is not suitable for long-term, out-of-hospital use. A key to long-term monitoring is the ability to detect abnormal cardiac rhythms, i.e., arrhythmia, in real-time. Most existing studies only focus on the accuracy of arrhythmia classification, instead of runtime performance of the workflow. In this paper, we present our work on supporting real-time arrhythmic detection using convolutional neural networks, which take images of electrocardiogram (ECG) segments as input, and classify the arrhythmia conditions. To support real-time processing, we have carried out extensive experiments and evaluated the computational cost of each step of the classification workflow. Our results show that it is feasible to achieve real-time arrhythmic detection using convolutional neural networks. To further demonstrate the generalizability of this approach, we used the trained model with processed data collected by a customized wearable sensor from a lab setting, and the results shown that our approach is highly accurate and efficient. This research provides the potentials to enable in-home real-time heart monitoring based on 2D image data, which opens up opportunities for integrating both machine learning and traditional diagnostic approaches.</description><subject>anomaly detection</subject><subject>Big Data</subject><subject>convolutional neural networks</subject><subject>machine learning</subject><subject>smart health</subject><issn>2624-909X</issn><issn>2624-909X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkctu1TAQQC0EolXpD7BAWbLJZfyMvUJQ0YdUCQm1EjvLsSf3piRxsZ2i_n1zH1TtxuMZe47HOoR8pLDiXJsvXXDFrRgwvqKsgUaqN-SYKSZqA-b32xf7I3Ka8x0AMAmSUv6eHHENUgtQx-T7L3RDXfoRK5fS5rFsxt5VAQv60sepmnM_rSsfp4c4zNuKG6oJ57QL5V9Mf_IH8q5zQ8bTQzwht-c_bs4u6-ufF1dn365rLxiUWgQKQTZANXoumiCEkehbLZdEAzYSW2wVeAqdkbpRApkG44PghgKVDT8hV3tuiO7O3qd-dOnRRtfbXSGmtXWp9H5Ay7vGKN514IGKloFRwZsOmfKMMhNgYX3ds-7ndsTgcSrLl15BX59M_cau44OloIxSQi2EzwdCin9nzMWOffY4DG7COGfLtDG8Wdbt4Gx_1aeYc8Lu-R0KdivT7mTarUx7kLk0fXo54XPLf3X8CRGSm8w</recordid><startdate>20231120</startdate><enddate>20231120</enddate><creator>Vu, Thong</creator><creator>Petty, Tyler</creator><creator>Yakut, Kemal</creator><creator>Usman, Muhammad</creator><creator>Xue, Wei</creator><creator>Haas, Francis M</creator><creator>Hirsh, Robert A</creator><creator>Zhao, Xinghui</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20231120</creationdate><title>Real-time arrhythmia detection using convolutional neural networks</title><author>Vu, Thong ; Petty, Tyler ; Yakut, Kemal ; Usman, Muhammad ; Xue, Wei ; Haas, Francis M ; Hirsh, Robert A ; Zhao, Xinghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-4d10d57018ec347d4495ecb8534780e75ebeb60c10f958764e2809cd439101573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>anomaly detection</topic><topic>Big Data</topic><topic>convolutional neural networks</topic><topic>machine learning</topic><topic>smart health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu, Thong</creatorcontrib><creatorcontrib>Petty, Tyler</creatorcontrib><creatorcontrib>Yakut, Kemal</creatorcontrib><creatorcontrib>Usman, Muhammad</creatorcontrib><creatorcontrib>Xue, Wei</creatorcontrib><creatorcontrib>Haas, Francis M</creatorcontrib><creatorcontrib>Hirsh, Robert A</creatorcontrib><creatorcontrib>Zhao, Xinghui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vu, Thong</au><au>Petty, Tyler</au><au>Yakut, Kemal</au><au>Usman, Muhammad</au><au>Xue, Wei</au><au>Haas, Francis M</au><au>Hirsh, Robert A</au><au>Zhao, Xinghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time arrhythmia detection using convolutional neural networks</atitle><jtitle>Frontiers in big data</jtitle><addtitle>Front Big Data</addtitle><date>2023-11-20</date><risdate>2023</risdate><volume>6</volume><spage>1270756</spage><epage>1270756</epage><pages>1270756-1270756</pages><issn>2624-909X</issn><eissn>2624-909X</eissn><abstract>Cardiovascular diseases, such as heart attack and congestive heart failure, are the leading cause of death both in the United States and worldwide. The current medical practice for diagnosing cardiovascular diseases is not suitable for long-term, out-of-hospital use. A key to long-term monitoring is the ability to detect abnormal cardiac rhythms, i.e., arrhythmia, in real-time. Most existing studies only focus on the accuracy of arrhythmia classification, instead of runtime performance of the workflow. In this paper, we present our work on supporting real-time arrhythmic detection using convolutional neural networks, which take images of electrocardiogram (ECG) segments as input, and classify the arrhythmia conditions. To support real-time processing, we have carried out extensive experiments and evaluated the computational cost of each step of the classification workflow. Our results show that it is feasible to achieve real-time arrhythmic detection using convolutional neural networks. To further demonstrate the generalizability of this approach, we used the trained model with processed data collected by a customized wearable sensor from a lab setting, and the results shown that our approach is highly accurate and efficient. This research provides the potentials to enable in-home real-time heart monitoring based on 2D image data, which opens up opportunities for integrating both machine learning and traditional diagnostic approaches.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>38058406</pmid><doi>10.3389/fdata.2023.1270756</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2624-909X |
ispartof | Frontiers in big data, 2023-11, Vol.6, p.1270756-1270756 |
issn | 2624-909X 2624-909X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3f7963ff0c014b2096dc9fe26c2129d0 |
source | PubMed Central |
subjects | anomaly detection Big Data convolutional neural networks machine learning smart health |
title | Real-time arrhythmia detection using convolutional neural networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20arrhythmia%20detection%20using%20convolutional%20neural%20networks&rft.jtitle=Frontiers%20in%20big%20data&rft.au=Vu,%20Thong&rft.date=2023-11-20&rft.volume=6&rft.spage=1270756&rft.epage=1270756&rft.pages=1270756-1270756&rft.issn=2624-909X&rft.eissn=2624-909X&rft_id=info:doi/10.3389/fdata.2023.1270756&rft_dat=%3Cproquest_doaj_%3E2899372897%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-4d10d57018ec347d4495ecb8534780e75ebeb60c10f958764e2809cd439101573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899372897&rft_id=info:pmid/38058406&rfr_iscdi=true |