Loading…

Real-time arrhythmia detection using convolutional neural networks

Cardiovascular diseases, such as heart attack and congestive heart failure, are the leading cause of death both in the United States and worldwide. The current medical practice for diagnosing cardiovascular diseases is not suitable for long-term, out-of-hospital use. A key to long-term monitoring is...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in big data 2023-11, Vol.6, p.1270756-1270756
Main Authors: Vu, Thong, Petty, Tyler, Yakut, Kemal, Usman, Muhammad, Xue, Wei, Haas, Francis M, Hirsh, Robert A, Zhao, Xinghui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c420t-4d10d57018ec347d4495ecb8534780e75ebeb60c10f958764e2809cd439101573
container_end_page 1270756
container_issue
container_start_page 1270756
container_title Frontiers in big data
container_volume 6
creator Vu, Thong
Petty, Tyler
Yakut, Kemal
Usman, Muhammad
Xue, Wei
Haas, Francis M
Hirsh, Robert A
Zhao, Xinghui
description Cardiovascular diseases, such as heart attack and congestive heart failure, are the leading cause of death both in the United States and worldwide. The current medical practice for diagnosing cardiovascular diseases is not suitable for long-term, out-of-hospital use. A key to long-term monitoring is the ability to detect abnormal cardiac rhythms, i.e., arrhythmia, in real-time. Most existing studies only focus on the accuracy of arrhythmia classification, instead of runtime performance of the workflow. In this paper, we present our work on supporting real-time arrhythmic detection using convolutional neural networks, which take images of electrocardiogram (ECG) segments as input, and classify the arrhythmia conditions. To support real-time processing, we have carried out extensive experiments and evaluated the computational cost of each step of the classification workflow. Our results show that it is feasible to achieve real-time arrhythmic detection using convolutional neural networks. To further demonstrate the generalizability of this approach, we used the trained model with processed data collected by a customized wearable sensor from a lab setting, and the results shown that our approach is highly accurate and efficient. This research provides the potentials to enable in-home real-time heart monitoring based on 2D image data, which opens up opportunities for integrating both machine learning and traditional diagnostic approaches.
doi_str_mv 10.3389/fdata.2023.1270756
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3f7963ff0c014b2096dc9fe26c2129d0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3f7963ff0c014b2096dc9fe26c2129d0</doaj_id><sourcerecordid>2899372897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-4d10d57018ec347d4495ecb8534780e75ebeb60c10f958764e2809cd439101573</originalsourceid><addsrcrecordid>eNpVkctu1TAQQC0EolXpD7BAWbLJZfyMvUJQ0YdUCQm1EjvLsSf3piRxsZ2i_n1zH1TtxuMZe47HOoR8pLDiXJsvXXDFrRgwvqKsgUaqN-SYKSZqA-b32xf7I3Ka8x0AMAmSUv6eHHENUgtQx-T7L3RDXfoRK5fS5rFsxt5VAQv60sepmnM_rSsfp4c4zNuKG6oJ57QL5V9Mf_IH8q5zQ8bTQzwht-c_bs4u6-ufF1dn365rLxiUWgQKQTZANXoumiCEkehbLZdEAzYSW2wVeAqdkbpRApkG44PghgKVDT8hV3tuiO7O3qd-dOnRRtfbXSGmtXWp9H5Ay7vGKN514IGKloFRwZsOmfKMMhNgYX3ds-7ndsTgcSrLl15BX59M_cau44OloIxSQi2EzwdCin9nzMWOffY4DG7COGfLtDG8Wdbt4Gx_1aeYc8Lu-R0KdivT7mTarUx7kLk0fXo54XPLf3X8CRGSm8w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899372897</pqid></control><display><type>article</type><title>Real-time arrhythmia detection using convolutional neural networks</title><source>PubMed Central</source><creator>Vu, Thong ; Petty, Tyler ; Yakut, Kemal ; Usman, Muhammad ; Xue, Wei ; Haas, Francis M ; Hirsh, Robert A ; Zhao, Xinghui</creator><creatorcontrib>Vu, Thong ; Petty, Tyler ; Yakut, Kemal ; Usman, Muhammad ; Xue, Wei ; Haas, Francis M ; Hirsh, Robert A ; Zhao, Xinghui</creatorcontrib><description>Cardiovascular diseases, such as heart attack and congestive heart failure, are the leading cause of death both in the United States and worldwide. The current medical practice for diagnosing cardiovascular diseases is not suitable for long-term, out-of-hospital use. A key to long-term monitoring is the ability to detect abnormal cardiac rhythms, i.e., arrhythmia, in real-time. Most existing studies only focus on the accuracy of arrhythmia classification, instead of runtime performance of the workflow. In this paper, we present our work on supporting real-time arrhythmic detection using convolutional neural networks, which take images of electrocardiogram (ECG) segments as input, and classify the arrhythmia conditions. To support real-time processing, we have carried out extensive experiments and evaluated the computational cost of each step of the classification workflow. Our results show that it is feasible to achieve real-time arrhythmic detection using convolutional neural networks. To further demonstrate the generalizability of this approach, we used the trained model with processed data collected by a customized wearable sensor from a lab setting, and the results shown that our approach is highly accurate and efficient. This research provides the potentials to enable in-home real-time heart monitoring based on 2D image data, which opens up opportunities for integrating both machine learning and traditional diagnostic approaches.</description><identifier>ISSN: 2624-909X</identifier><identifier>EISSN: 2624-909X</identifier><identifier>DOI: 10.3389/fdata.2023.1270756</identifier><identifier>PMID: 38058406</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>anomaly detection ; Big Data ; convolutional neural networks ; machine learning ; smart health</subject><ispartof>Frontiers in big data, 2023-11, Vol.6, p.1270756-1270756</ispartof><rights>Copyright © 2023 Vu, Petty, Yakut, Usman, Xue, Haas, Hirsh and Zhao.</rights><rights>Copyright © 2023 Vu, Petty, Yakut, Usman, Xue, Haas, Hirsh and Zhao. 2023 Vu, Petty, Yakut, Usman, Xue, Haas, Hirsh and Zhao</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c420t-4d10d57018ec347d4495ecb8534780e75ebeb60c10f958764e2809cd439101573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696646/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696646/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38058406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vu, Thong</creatorcontrib><creatorcontrib>Petty, Tyler</creatorcontrib><creatorcontrib>Yakut, Kemal</creatorcontrib><creatorcontrib>Usman, Muhammad</creatorcontrib><creatorcontrib>Xue, Wei</creatorcontrib><creatorcontrib>Haas, Francis M</creatorcontrib><creatorcontrib>Hirsh, Robert A</creatorcontrib><creatorcontrib>Zhao, Xinghui</creatorcontrib><title>Real-time arrhythmia detection using convolutional neural networks</title><title>Frontiers in big data</title><addtitle>Front Big Data</addtitle><description>Cardiovascular diseases, such as heart attack and congestive heart failure, are the leading cause of death both in the United States and worldwide. The current medical practice for diagnosing cardiovascular diseases is not suitable for long-term, out-of-hospital use. A key to long-term monitoring is the ability to detect abnormal cardiac rhythms, i.e., arrhythmia, in real-time. Most existing studies only focus on the accuracy of arrhythmia classification, instead of runtime performance of the workflow. In this paper, we present our work on supporting real-time arrhythmic detection using convolutional neural networks, which take images of electrocardiogram (ECG) segments as input, and classify the arrhythmia conditions. To support real-time processing, we have carried out extensive experiments and evaluated the computational cost of each step of the classification workflow. Our results show that it is feasible to achieve real-time arrhythmic detection using convolutional neural networks. To further demonstrate the generalizability of this approach, we used the trained model with processed data collected by a customized wearable sensor from a lab setting, and the results shown that our approach is highly accurate and efficient. This research provides the potentials to enable in-home real-time heart monitoring based on 2D image data, which opens up opportunities for integrating both machine learning and traditional diagnostic approaches.</description><subject>anomaly detection</subject><subject>Big Data</subject><subject>convolutional neural networks</subject><subject>machine learning</subject><subject>smart health</subject><issn>2624-909X</issn><issn>2624-909X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkctu1TAQQC0EolXpD7BAWbLJZfyMvUJQ0YdUCQm1EjvLsSf3piRxsZ2i_n1zH1TtxuMZe47HOoR8pLDiXJsvXXDFrRgwvqKsgUaqN-SYKSZqA-b32xf7I3Ka8x0AMAmSUv6eHHENUgtQx-T7L3RDXfoRK5fS5rFsxt5VAQv60sepmnM_rSsfp4c4zNuKG6oJ57QL5V9Mf_IH8q5zQ8bTQzwht-c_bs4u6-ufF1dn365rLxiUWgQKQTZANXoumiCEkehbLZdEAzYSW2wVeAqdkbpRApkG44PghgKVDT8hV3tuiO7O3qd-dOnRRtfbXSGmtXWp9H5Ay7vGKN514IGKloFRwZsOmfKMMhNgYX3ds-7ndsTgcSrLl15BX59M_cau44OloIxSQi2EzwdCin9nzMWOffY4DG7COGfLtDG8Wdbt4Gx_1aeYc8Lu-R0KdivT7mTarUx7kLk0fXo54XPLf3X8CRGSm8w</recordid><startdate>20231120</startdate><enddate>20231120</enddate><creator>Vu, Thong</creator><creator>Petty, Tyler</creator><creator>Yakut, Kemal</creator><creator>Usman, Muhammad</creator><creator>Xue, Wei</creator><creator>Haas, Francis M</creator><creator>Hirsh, Robert A</creator><creator>Zhao, Xinghui</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20231120</creationdate><title>Real-time arrhythmia detection using convolutional neural networks</title><author>Vu, Thong ; Petty, Tyler ; Yakut, Kemal ; Usman, Muhammad ; Xue, Wei ; Haas, Francis M ; Hirsh, Robert A ; Zhao, Xinghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-4d10d57018ec347d4495ecb8534780e75ebeb60c10f958764e2809cd439101573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>anomaly detection</topic><topic>Big Data</topic><topic>convolutional neural networks</topic><topic>machine learning</topic><topic>smart health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu, Thong</creatorcontrib><creatorcontrib>Petty, Tyler</creatorcontrib><creatorcontrib>Yakut, Kemal</creatorcontrib><creatorcontrib>Usman, Muhammad</creatorcontrib><creatorcontrib>Xue, Wei</creatorcontrib><creatorcontrib>Haas, Francis M</creatorcontrib><creatorcontrib>Hirsh, Robert A</creatorcontrib><creatorcontrib>Zhao, Xinghui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vu, Thong</au><au>Petty, Tyler</au><au>Yakut, Kemal</au><au>Usman, Muhammad</au><au>Xue, Wei</au><au>Haas, Francis M</au><au>Hirsh, Robert A</au><au>Zhao, Xinghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time arrhythmia detection using convolutional neural networks</atitle><jtitle>Frontiers in big data</jtitle><addtitle>Front Big Data</addtitle><date>2023-11-20</date><risdate>2023</risdate><volume>6</volume><spage>1270756</spage><epage>1270756</epage><pages>1270756-1270756</pages><issn>2624-909X</issn><eissn>2624-909X</eissn><abstract>Cardiovascular diseases, such as heart attack and congestive heart failure, are the leading cause of death both in the United States and worldwide. The current medical practice for diagnosing cardiovascular diseases is not suitable for long-term, out-of-hospital use. A key to long-term monitoring is the ability to detect abnormal cardiac rhythms, i.e., arrhythmia, in real-time. Most existing studies only focus on the accuracy of arrhythmia classification, instead of runtime performance of the workflow. In this paper, we present our work on supporting real-time arrhythmic detection using convolutional neural networks, which take images of electrocardiogram (ECG) segments as input, and classify the arrhythmia conditions. To support real-time processing, we have carried out extensive experiments and evaluated the computational cost of each step of the classification workflow. Our results show that it is feasible to achieve real-time arrhythmic detection using convolutional neural networks. To further demonstrate the generalizability of this approach, we used the trained model with processed data collected by a customized wearable sensor from a lab setting, and the results shown that our approach is highly accurate and efficient. This research provides the potentials to enable in-home real-time heart monitoring based on 2D image data, which opens up opportunities for integrating both machine learning and traditional diagnostic approaches.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>38058406</pmid><doi>10.3389/fdata.2023.1270756</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2624-909X
ispartof Frontiers in big data, 2023-11, Vol.6, p.1270756-1270756
issn 2624-909X
2624-909X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3f7963ff0c014b2096dc9fe26c2129d0
source PubMed Central
subjects anomaly detection
Big Data
convolutional neural networks
machine learning
smart health
title Real-time arrhythmia detection using convolutional neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20arrhythmia%20detection%20using%20convolutional%20neural%20networks&rft.jtitle=Frontiers%20in%20big%20data&rft.au=Vu,%20Thong&rft.date=2023-11-20&rft.volume=6&rft.spage=1270756&rft.epage=1270756&rft.pages=1270756-1270756&rft.issn=2624-909X&rft.eissn=2624-909X&rft_id=info:doi/10.3389/fdata.2023.1270756&rft_dat=%3Cproquest_doaj_%3E2899372897%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-4d10d57018ec347d4495ecb8534780e75ebeb60c10f958764e2809cd439101573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899372897&rft_id=info:pmid/38058406&rfr_iscdi=true