Loading…

Combining and Comparing an Unmanned Aerial Vehicle and Multiple Remote Sensing Satellites to Calculate Long-Term River Discharge in an Ungauged Water Source Region on the Tibetan Plateau

Research into global water resources is challenged by the lack of ground-based hydrometric stations and limited data sharing. It is difficult to collect good quality, long-term information about river discharges in ungauged regions. Herein, an approach was developed to determine the river discharges...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2020-07, Vol.12 (13), p.2155
Main Authors: Lou, Hezhen, Wang, Pengfei, Yang, Shengtian, Hao, Fanghua, Ren, Xiaoyu, Wang, Yue, Shi, Liuhua, Wang, Juan, Gong, Tongliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Research into global water resources is challenged by the lack of ground-based hydrometric stations and limited data sharing. It is difficult to collect good quality, long-term information about river discharges in ungauged regions. Herein, an approach was developed to determine the river discharges of 24 rivers in ungauged regions on the Tibetan Plateau on a long-term scale. This method involved coupling the Manning–Strickler formula, and data from an unmanned aerial vehicle (UAV) and the Gaofen-2, SPOT-5, and Sentinel-2 satellites. We also compared the discharges calculated by using the three satellites’ data. Fundamental information about the rivers was extracted from the UAV data. Comparison of the discharges calculated from the in-situ measurements and the UAV data gave an R2 value of 0.84, an average NSE of 0.79, and an RMSE of 0.11 m3/s. The river discharges calculated with the GF-2 remote sensing data and the in-situ experiments for the same months were compared and the R2, RMSE, and the NSE were 0.80, 1.8 m3/s, and 0.78, respectively. Comparing the discharges calculated over the long term from the measured in-situ data and the SPOT-5 and Sentinel-2 data gave R2 values of 0.93 and 0.92, and RMSE values of 2.56 m3/s and 3.16 m3/s, respectively. The results showed that the GF-2 and UAV were useful for calculating the discharges for low-flow rivers, while the SPOT-5 or the Sentinel-2 satellite gave good results for high-flow river discharges in the long-term. Our results demonstrate that the discharges in ungauged tributaries can be reliably estimated in the long-term with this method. This method extended the previous research, which described river discharge only in one period and provided more support to the monitoring and management of the tributaries in ungauged regions.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12132155