Loading…

Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach

Satellite remote sensing can be used to investigate spatially distributed hydrological states for use in modeling, assessment, and management. However, in the visual wavelengths, cloud cover can often obscure significant portions of the images. This study develops a rule-based, multistep method for...

Full description

Saved in:
Bibliographic Details
Published in:Hydrology and earth system sciences 2013-05, Vol.17 (5), p.1809-1823
Main Authors: López-Burgos, V, Gupta, H. V, Clark, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c516t-110de38d31e207d617f32e406fed46d4251ad029229ec91a9927ec7aba5e3c7f3
cites cdi_FETCH-LOGICAL-c516t-110de38d31e207d617f32e406fed46d4251ad029229ec91a9927ec7aba5e3c7f3
container_end_page 1823
container_issue 5
container_start_page 1809
container_title Hydrology and earth system sciences
container_volume 17
creator López-Burgos, V
Gupta, H. V
Clark, M
description Satellite remote sensing can be used to investigate spatially distributed hydrological states for use in modeling, assessment, and management. However, in the visual wavelengths, cloud cover can often obscure significant portions of the images. This study develops a rule-based, multistep method for removing clouds from MODIS snow cover area (SCA) images. The methods used include combining images from more than one satellite, time interpolation, spatial interpolation, and estimation of the probability of snow occurrence based on topographic information. Applied over the upper Salt River basin in Arizona, the method reduced the degree of cloud obscuration by 93.8%, while maintaining a similar degree of image accuracy to that of the original images.
doi_str_mv 10.5194/hess-17-1809-2013
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3f83eab5ff574430ae72b33ce89d19be</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A481466928</galeid><doaj_id>oai_doaj_org_article_3f83eab5ff574430ae72b33ce89d19be</doaj_id><sourcerecordid>A481466928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-110de38d31e207d617f32e406fed46d4251ad029229ec91a9927ec7aba5e3c7f3</originalsourceid><addsrcrecordid>eNptks1u1DAUhSMEEqXwAOwssYFFin8SJ15W5W-kokotrK0b-2bGoyQebKdl3oDHxplBwCDkha2j75yra52ieMnoRc1U9XaDMZasKVlLVckpE4-KMyZpUzZKtI__ej8tnsW4pZS3reRnxY9btLNx05qYwc-W-C6aOUByfiK-J59v3q3uSJz8AzH-HgOBgEB2wWdTiqTbZ3ns3LQExN1iKxOOOx9gIAnNZnLfZozkwaUNOfg66Nzg0n4JP8TCLqtgNs-LJz0MEV_8us-Lrx_ef7n6VF7ffFxdXV6XpmYylYxRi6K1giGnjZWs6QXHisoebSVtxWsGlnLFuUKjGCjFGzQNdFCjMBk-L1bHXOthq3fBjRD22oPTB8GHtYaQnBlQi74VCF3d93VTVYICNrwTwmCrLFMd5qzXx6y8wrJn0qOLBocBJvRz1Ew0nNZSCprRV_-gWz-HKW-aKZmZumrVH2oNeb6bep8CmCVUX1Ytq6RUvM3UxX-ofCyOzvgJe5f1E8ObE0NmEn5Pa5hj1Ku721OWHVkTfIwB-99_xKheqqaXqmnW6KVqeqma-AlHs8dJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365665489</pqid></control><display><type>article</type><title>Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>DOAJ Directory of Open Access Journals</source><creator>López-Burgos, V ; Gupta, H. V ; Clark, M</creator><creatorcontrib>López-Burgos, V ; Gupta, H. V ; Clark, M</creatorcontrib><description>Satellite remote sensing can be used to investigate spatially distributed hydrological states for use in modeling, assessment, and management. However, in the visual wavelengths, cloud cover can often obscure significant portions of the images. This study develops a rule-based, multistep method for removing clouds from MODIS snow cover area (SCA) images. The methods used include combining images from more than one satellite, time interpolation, spatial interpolation, and estimation of the probability of snow occurrence based on topographic information. Applied over the upper Salt River basin in Arizona, the method reduced the degree of cloud obscuration by 93.8%, while maintaining a similar degree of image accuracy to that of the original images.</description><identifier>ISSN: 1607-7938</identifier><identifier>ISSN: 1027-5606</identifier><identifier>EISSN: 1607-7938</identifier><identifier>DOI: 10.5194/hess-17-1809-2013</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Clouds ; Freshwater ; Hydrology ; Interpolation ; Methods ; MODIS ; Satellite remote sensing ; Satellites ; Snow ; Snow cover</subject><ispartof>Hydrology and earth system sciences, 2013-05, Vol.17 (5), p.1809-1823</ispartof><rights>COPYRIGHT 2013 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-110de38d31e207d617f32e406fed46d4251ad029229ec91a9927ec7aba5e3c7f3</citedby><cites>FETCH-LOGICAL-c516t-110de38d31e207d617f32e406fed46d4251ad029229ec91a9927ec7aba5e3c7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1365665489/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1365665489?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,25731,27901,27902,36989,36990,44566,75096</link.rule.ids></links><search><creatorcontrib>López-Burgos, V</creatorcontrib><creatorcontrib>Gupta, H. V</creatorcontrib><creatorcontrib>Clark, M</creatorcontrib><title>Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach</title><title>Hydrology and earth system sciences</title><description>Satellite remote sensing can be used to investigate spatially distributed hydrological states for use in modeling, assessment, and management. However, in the visual wavelengths, cloud cover can often obscure significant portions of the images. This study develops a rule-based, multistep method for removing clouds from MODIS snow cover area (SCA) images. The methods used include combining images from more than one satellite, time interpolation, spatial interpolation, and estimation of the probability of snow occurrence based on topographic information. Applied over the upper Salt River basin in Arizona, the method reduced the degree of cloud obscuration by 93.8%, while maintaining a similar degree of image accuracy to that of the original images.</description><subject>Clouds</subject><subject>Freshwater</subject><subject>Hydrology</subject><subject>Interpolation</subject><subject>Methods</subject><subject>MODIS</subject><subject>Satellite remote sensing</subject><subject>Satellites</subject><subject>Snow</subject><subject>Snow cover</subject><issn>1607-7938</issn><issn>1027-5606</issn><issn>1607-7938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks1u1DAUhSMEEqXwAOwssYFFin8SJ15W5W-kokotrK0b-2bGoyQebKdl3oDHxplBwCDkha2j75yra52ieMnoRc1U9XaDMZasKVlLVckpE4-KMyZpUzZKtI__ej8tnsW4pZS3reRnxY9btLNx05qYwc-W-C6aOUByfiK-J59v3q3uSJz8AzH-HgOBgEB2wWdTiqTbZ3ns3LQExN1iKxOOOx9gIAnNZnLfZozkwaUNOfg66Nzg0n4JP8TCLqtgNs-LJz0MEV_8us-Lrx_ef7n6VF7ffFxdXV6XpmYylYxRi6K1giGnjZWs6QXHisoebSVtxWsGlnLFuUKjGCjFGzQNdFCjMBk-L1bHXOthq3fBjRD22oPTB8GHtYaQnBlQi74VCF3d93VTVYICNrwTwmCrLFMd5qzXx6y8wrJn0qOLBocBJvRz1Ew0nNZSCprRV_-gWz-HKW-aKZmZumrVH2oNeb6bep8CmCVUX1Ytq6RUvM3UxX-ofCyOzvgJe5f1E8ObE0NmEn5Pa5hj1Ku721OWHVkTfIwB-99_xKheqqaXqmnW6KVqeqma-AlHs8dJ</recordid><startdate>20130513</startdate><enddate>20130513</enddate><creator>López-Burgos, V</creator><creator>Gupta, H. V</creator><creator>Clark, M</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>20130513</creationdate><title>Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach</title><author>López-Burgos, V ; Gupta, H. V ; Clark, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-110de38d31e207d617f32e406fed46d4251ad029229ec91a9927ec7aba5e3c7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Clouds</topic><topic>Freshwater</topic><topic>Hydrology</topic><topic>Interpolation</topic><topic>Methods</topic><topic>MODIS</topic><topic>Satellite remote sensing</topic><topic>Satellites</topic><topic>Snow</topic><topic>Snow cover</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Burgos, V</creatorcontrib><creatorcontrib>Gupta, H. V</creatorcontrib><creatorcontrib>Clark, M</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Hydrology and earth system sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Burgos, V</au><au>Gupta, H. V</au><au>Clark, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach</atitle><jtitle>Hydrology and earth system sciences</jtitle><date>2013-05-13</date><risdate>2013</risdate><volume>17</volume><issue>5</issue><spage>1809</spage><epage>1823</epage><pages>1809-1823</pages><issn>1607-7938</issn><issn>1027-5606</issn><eissn>1607-7938</eissn><abstract>Satellite remote sensing can be used to investigate spatially distributed hydrological states for use in modeling, assessment, and management. However, in the visual wavelengths, cloud cover can often obscure significant portions of the images. This study develops a rule-based, multistep method for removing clouds from MODIS snow cover area (SCA) images. The methods used include combining images from more than one satellite, time interpolation, spatial interpolation, and estimation of the probability of snow occurrence based on topographic information. Applied over the upper Salt River basin in Arizona, the method reduced the degree of cloud obscuration by 93.8%, while maintaining a similar degree of image accuracy to that of the original images.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/hess-17-1809-2013</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1607-7938
ispartof Hydrology and earth system sciences, 2013-05, Vol.17 (5), p.1809-1823
issn 1607-7938
1027-5606
1607-7938
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3f83eab5ff574430ae72b33ce89d19be
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); DOAJ Directory of Open Access Journals
subjects Clouds
Freshwater
Hydrology
Interpolation
Methods
MODIS
Satellite remote sensing
Satellites
Snow
Snow cover
title Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A24%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20cloud%20obscuration%20of%20MODIS%20snow%20cover%20area%20products%20by%20combining%20spatio-temporal%20techniques%20with%20a%20probability%20of%20snow%20approach&rft.jtitle=Hydrology%20and%20earth%20system%20sciences&rft.au=L%C3%B3pez-Burgos,%20V&rft.date=2013-05-13&rft.volume=17&rft.issue=5&rft.spage=1809&rft.epage=1823&rft.pages=1809-1823&rft.issn=1607-7938&rft.eissn=1607-7938&rft_id=info:doi/10.5194/hess-17-1809-2013&rft_dat=%3Cgale_doaj_%3EA481466928%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c516t-110de38d31e207d617f32e406fed46d4251ad029229ec91a9927ec7aba5e3c7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1365665489&rft_id=info:pmid/&rft_galeid=A481466928&rfr_iscdi=true