Loading…
Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach
Satellite remote sensing can be used to investigate spatially distributed hydrological states for use in modeling, assessment, and management. However, in the visual wavelengths, cloud cover can often obscure significant portions of the images. This study develops a rule-based, multistep method for...
Saved in:
Published in: | Hydrology and earth system sciences 2013-05, Vol.17 (5), p.1809-1823 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c516t-110de38d31e207d617f32e406fed46d4251ad029229ec91a9927ec7aba5e3c7f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c516t-110de38d31e207d617f32e406fed46d4251ad029229ec91a9927ec7aba5e3c7f3 |
container_end_page | 1823 |
container_issue | 5 |
container_start_page | 1809 |
container_title | Hydrology and earth system sciences |
container_volume | 17 |
creator | López-Burgos, V Gupta, H. V Clark, M |
description | Satellite remote sensing can be used to investigate spatially distributed hydrological states for use in modeling, assessment, and management. However, in the visual wavelengths, cloud cover can often obscure significant portions of the images. This study develops a rule-based, multistep method for removing clouds from MODIS snow cover area (SCA) images. The methods used include combining images from more than one satellite, time interpolation, spatial interpolation, and estimation of the probability of snow occurrence based on topographic information. Applied over the upper Salt River basin in Arizona, the method reduced the degree of cloud obscuration by 93.8%, while maintaining a similar degree of image accuracy to that of the original images. |
doi_str_mv | 10.5194/hess-17-1809-2013 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3f83eab5ff574430ae72b33ce89d19be</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A481466928</galeid><doaj_id>oai_doaj_org_article_3f83eab5ff574430ae72b33ce89d19be</doaj_id><sourcerecordid>A481466928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-110de38d31e207d617f32e406fed46d4251ad029229ec91a9927ec7aba5e3c7f3</originalsourceid><addsrcrecordid>eNptks1u1DAUhSMEEqXwAOwssYFFin8SJ15W5W-kokotrK0b-2bGoyQebKdl3oDHxplBwCDkha2j75yra52ieMnoRc1U9XaDMZasKVlLVckpE4-KMyZpUzZKtI__ej8tnsW4pZS3reRnxY9btLNx05qYwc-W-C6aOUByfiK-J59v3q3uSJz8AzH-HgOBgEB2wWdTiqTbZ3ns3LQExN1iKxOOOx9gIAnNZnLfZozkwaUNOfg66Nzg0n4JP8TCLqtgNs-LJz0MEV_8us-Lrx_ef7n6VF7ffFxdXV6XpmYylYxRi6K1giGnjZWs6QXHisoebSVtxWsGlnLFuUKjGCjFGzQNdFCjMBk-L1bHXOthq3fBjRD22oPTB8GHtYaQnBlQi74VCF3d93VTVYICNrwTwmCrLFMd5qzXx6y8wrJn0qOLBocBJvRz1Ew0nNZSCprRV_-gWz-HKW-aKZmZumrVH2oNeb6bep8CmCVUX1Ytq6RUvM3UxX-ofCyOzvgJe5f1E8ObE0NmEn5Pa5hj1Ku721OWHVkTfIwB-99_xKheqqaXqmnW6KVqeqma-AlHs8dJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365665489</pqid></control><display><type>article</type><title>Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>DOAJ Directory of Open Access Journals</source><creator>López-Burgos, V ; Gupta, H. V ; Clark, M</creator><creatorcontrib>López-Burgos, V ; Gupta, H. V ; Clark, M</creatorcontrib><description>Satellite remote sensing can be used to investigate spatially distributed hydrological states for use in modeling, assessment, and management. However, in the visual wavelengths, cloud cover can often obscure significant portions of the images. This study develops a rule-based, multistep method for removing clouds from MODIS snow cover area (SCA) images. The methods used include combining images from more than one satellite, time interpolation, spatial interpolation, and estimation of the probability of snow occurrence based on topographic information. Applied over the upper Salt River basin in Arizona, the method reduced the degree of cloud obscuration by 93.8%, while maintaining a similar degree of image accuracy to that of the original images.</description><identifier>ISSN: 1607-7938</identifier><identifier>ISSN: 1027-5606</identifier><identifier>EISSN: 1607-7938</identifier><identifier>DOI: 10.5194/hess-17-1809-2013</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Clouds ; Freshwater ; Hydrology ; Interpolation ; Methods ; MODIS ; Satellite remote sensing ; Satellites ; Snow ; Snow cover</subject><ispartof>Hydrology and earth system sciences, 2013-05, Vol.17 (5), p.1809-1823</ispartof><rights>COPYRIGHT 2013 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-110de38d31e207d617f32e406fed46d4251ad029229ec91a9927ec7aba5e3c7f3</citedby><cites>FETCH-LOGICAL-c516t-110de38d31e207d617f32e406fed46d4251ad029229ec91a9927ec7aba5e3c7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1365665489/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1365665489?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,25731,27901,27902,36989,36990,44566,75096</link.rule.ids></links><search><creatorcontrib>López-Burgos, V</creatorcontrib><creatorcontrib>Gupta, H. V</creatorcontrib><creatorcontrib>Clark, M</creatorcontrib><title>Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach</title><title>Hydrology and earth system sciences</title><description>Satellite remote sensing can be used to investigate spatially distributed hydrological states for use in modeling, assessment, and management. However, in the visual wavelengths, cloud cover can often obscure significant portions of the images. This study develops a rule-based, multistep method for removing clouds from MODIS snow cover area (SCA) images. The methods used include combining images from more than one satellite, time interpolation, spatial interpolation, and estimation of the probability of snow occurrence based on topographic information. Applied over the upper Salt River basin in Arizona, the method reduced the degree of cloud obscuration by 93.8%, while maintaining a similar degree of image accuracy to that of the original images.</description><subject>Clouds</subject><subject>Freshwater</subject><subject>Hydrology</subject><subject>Interpolation</subject><subject>Methods</subject><subject>MODIS</subject><subject>Satellite remote sensing</subject><subject>Satellites</subject><subject>Snow</subject><subject>Snow cover</subject><issn>1607-7938</issn><issn>1027-5606</issn><issn>1607-7938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks1u1DAUhSMEEqXwAOwssYFFin8SJ15W5W-kokotrK0b-2bGoyQebKdl3oDHxplBwCDkha2j75yra52ieMnoRc1U9XaDMZasKVlLVckpE4-KMyZpUzZKtI__ej8tnsW4pZS3reRnxY9btLNx05qYwc-W-C6aOUByfiK-J59v3q3uSJz8AzH-HgOBgEB2wWdTiqTbZ3ns3LQExN1iKxOOOx9gIAnNZnLfZozkwaUNOfg66Nzg0n4JP8TCLqtgNs-LJz0MEV_8us-Lrx_ef7n6VF7ffFxdXV6XpmYylYxRi6K1giGnjZWs6QXHisoebSVtxWsGlnLFuUKjGCjFGzQNdFCjMBk-L1bHXOthq3fBjRD22oPTB8GHtYaQnBlQi74VCF3d93VTVYICNrwTwmCrLFMd5qzXx6y8wrJn0qOLBocBJvRz1Ew0nNZSCprRV_-gWz-HKW-aKZmZumrVH2oNeb6bep8CmCVUX1Ytq6RUvM3UxX-ofCyOzvgJe5f1E8ObE0NmEn5Pa5hj1Ku721OWHVkTfIwB-99_xKheqqaXqmnW6KVqeqma-AlHs8dJ</recordid><startdate>20130513</startdate><enddate>20130513</enddate><creator>López-Burgos, V</creator><creator>Gupta, H. V</creator><creator>Clark, M</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>20130513</creationdate><title>Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach</title><author>López-Burgos, V ; Gupta, H. V ; Clark, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-110de38d31e207d617f32e406fed46d4251ad029229ec91a9927ec7aba5e3c7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Clouds</topic><topic>Freshwater</topic><topic>Hydrology</topic><topic>Interpolation</topic><topic>Methods</topic><topic>MODIS</topic><topic>Satellite remote sensing</topic><topic>Satellites</topic><topic>Snow</topic><topic>Snow cover</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Burgos, V</creatorcontrib><creatorcontrib>Gupta, H. V</creatorcontrib><creatorcontrib>Clark, M</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Hydrology and earth system sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Burgos, V</au><au>Gupta, H. V</au><au>Clark, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach</atitle><jtitle>Hydrology and earth system sciences</jtitle><date>2013-05-13</date><risdate>2013</risdate><volume>17</volume><issue>5</issue><spage>1809</spage><epage>1823</epage><pages>1809-1823</pages><issn>1607-7938</issn><issn>1027-5606</issn><eissn>1607-7938</eissn><abstract>Satellite remote sensing can be used to investigate spatially distributed hydrological states for use in modeling, assessment, and management. However, in the visual wavelengths, cloud cover can often obscure significant portions of the images. This study develops a rule-based, multistep method for removing clouds from MODIS snow cover area (SCA) images. The methods used include combining images from more than one satellite, time interpolation, spatial interpolation, and estimation of the probability of snow occurrence based on topographic information. Applied over the upper Salt River basin in Arizona, the method reduced the degree of cloud obscuration by 93.8%, while maintaining a similar degree of image accuracy to that of the original images.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/hess-17-1809-2013</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1607-7938 |
ispartof | Hydrology and earth system sciences, 2013-05, Vol.17 (5), p.1809-1823 |
issn | 1607-7938 1027-5606 1607-7938 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3f83eab5ff574430ae72b33ce89d19be |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); DOAJ Directory of Open Access Journals |
subjects | Clouds Freshwater Hydrology Interpolation Methods MODIS Satellite remote sensing Satellites Snow Snow cover |
title | Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A24%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20cloud%20obscuration%20of%20MODIS%20snow%20cover%20area%20products%20by%20combining%20spatio-temporal%20techniques%20with%20a%20probability%20of%20snow%20approach&rft.jtitle=Hydrology%20and%20earth%20system%20sciences&rft.au=L%C3%B3pez-Burgos,%20V&rft.date=2013-05-13&rft.volume=17&rft.issue=5&rft.spage=1809&rft.epage=1823&rft.pages=1809-1823&rft.issn=1607-7938&rft.eissn=1607-7938&rft_id=info:doi/10.5194/hess-17-1809-2013&rft_dat=%3Cgale_doaj_%3EA481466928%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c516t-110de38d31e207d617f32e406fed46d4251ad029229ec91a9927ec7aba5e3c7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1365665489&rft_id=info:pmid/&rft_galeid=A481466928&rfr_iscdi=true |