Loading…

A Novel Ant Colony Optimization Algorithm With Levy Flight

Ant Colony Optimization (ACO) is a widely applied meta-heuristic algorithm. Little researches focused on the candidate selection mechanism, which was developed based on the simple uniform distribution. This paper employs the Levy flight mechanism based on Levy distribution to the candidate selection...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.67205-67213
Main Authors: Liu, Yahui, Cao, Buyang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-c3e9222b877e75c37d57f74d6c41bed2916b65c5cb4eeefc06a58988223b4b1e3
cites cdi_FETCH-LOGICAL-c408t-c3e9222b877e75c37d57f74d6c41bed2916b65c5cb4eeefc06a58988223b4b1e3
container_end_page 67213
container_issue
container_start_page 67205
container_title IEEE access
container_volume 8
creator Liu, Yahui
Cao, Buyang
description Ant Colony Optimization (ACO) is a widely applied meta-heuristic algorithm. Little researches focused on the candidate selection mechanism, which was developed based on the simple uniform distribution. This paper employs the Levy flight mechanism based on Levy distribution to the candidate selection process and takes advantage of Levy flight that not only guarantees the search speed but also extends the searching space to improve the performance of ACO. Levy ACO incorporating with Levy flight developed on the top of Max-min ACO. According to the computational experiments, the performance of Levy ACO is significantly better than the original Max-min ACO and some latest Traveling Salesman Problem (TSP) solvers.
doi_str_mv 10.1109/ACCESS.2020.2985498
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3f86ba1c4aa24dc085aa9ac297012567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9056538</ieee_id><doaj_id>oai_doaj_org_article_3f86ba1c4aa24dc085aa9ac297012567</doaj_id><sourcerecordid>2453701514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c3e9222b877e75c37d57f74d6c41bed2916b65c5cb4eeefc06a58988223b4b1e3</originalsourceid><addsrcrecordid>eNpNUE1rwkAQDaWFivUXeAn0HLvfH72FoK0g9WBLj8tms9GV6NpNFOyv79oU6RxmhuG9NzMvScYQTCAE8ikviulqNUEAgQmSghIpbpIBgkxmmGJ2-6-_T0ZtuwUxRBxRPkie8_TNn2yT5vsuLXzj9-d0eejczn3rzvl9mjdrH1y32aWfMacLezqns8atN91DclfrprWjvzpMPmbT9-I1Wyxf5kW-yAwBossMthIhVArOLacG84rympOKGQJLWyEJWcmooaYk1traAKapkEIghEtSQouHybzXrbzeqkNwOx3Oymunfgc-rJUOnTONVbgWrNTQEK0RqQwQVGupDZIcQEQZj1qPvdYh-K-jbTu19cewj-crRCiOMApJROEeZYJv22Dr61YI1MVz1XuuLp6rP88ja9yzXPzjypCAMooF_gHFantR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453701514</pqid></control><display><type>article</type><title>A Novel Ant Colony Optimization Algorithm With Levy Flight</title><source>IEEE Xplore Open Access Journals</source><creator>Liu, Yahui ; Cao, Buyang</creator><creatorcontrib>Liu, Yahui ; Cao, Buyang</creatorcontrib><description>Ant Colony Optimization (ACO) is a widely applied meta-heuristic algorithm. Little researches focused on the candidate selection mechanism, which was developed based on the simple uniform distribution. This paper employs the Levy flight mechanism based on Levy distribution to the candidate selection process and takes advantage of Levy flight that not only guarantees the search speed but also extends the searching space to improve the performance of ACO. Levy ACO incorporating with Levy flight developed on the top of Max-min ACO. According to the computational experiments, the performance of Levy ACO is significantly better than the original Max-min ACO and some latest Traveling Salesman Problem (TSP) solvers.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2985498</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Ant colony optimization ; Heuristic methods ; Indexes ; Levy distribution ; Levy flight ; Optimization ; Performance enhancement ; Random variables ; Reinforcement learning ; Solvers ; Space exploration ; Traveling salesman problem ; Traveling salesman problems</subject><ispartof>IEEE access, 2020, Vol.8, p.67205-67213</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c3e9222b877e75c37d57f74d6c41bed2916b65c5cb4eeefc06a58988223b4b1e3</citedby><cites>FETCH-LOGICAL-c408t-c3e9222b877e75c37d57f74d6c41bed2916b65c5cb4eeefc06a58988223b4b1e3</cites><orcidid>0000-0001-9257-4893 ; 0000-0002-6889-4763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9056538$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Liu, Yahui</creatorcontrib><creatorcontrib>Cao, Buyang</creatorcontrib><title>A Novel Ant Colony Optimization Algorithm With Levy Flight</title><title>IEEE access</title><addtitle>Access</addtitle><description>Ant Colony Optimization (ACO) is a widely applied meta-heuristic algorithm. Little researches focused on the candidate selection mechanism, which was developed based on the simple uniform distribution. This paper employs the Levy flight mechanism based on Levy distribution to the candidate selection process and takes advantage of Levy flight that not only guarantees the search speed but also extends the searching space to improve the performance of ACO. Levy ACO incorporating with Levy flight developed on the top of Max-min ACO. According to the computational experiments, the performance of Levy ACO is significantly better than the original Max-min ACO and some latest Traveling Salesman Problem (TSP) solvers.</description><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Heuristic methods</subject><subject>Indexes</subject><subject>Levy distribution</subject><subject>Levy flight</subject><subject>Optimization</subject><subject>Performance enhancement</subject><subject>Random variables</subject><subject>Reinforcement learning</subject><subject>Solvers</subject><subject>Space exploration</subject><subject>Traveling salesman problem</subject><subject>Traveling salesman problems</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1rwkAQDaWFivUXeAn0HLvfH72FoK0g9WBLj8tms9GV6NpNFOyv79oU6RxmhuG9NzMvScYQTCAE8ikviulqNUEAgQmSghIpbpIBgkxmmGJ2-6-_T0ZtuwUxRBxRPkie8_TNn2yT5vsuLXzj9-d0eejczn3rzvl9mjdrH1y32aWfMacLezqns8atN91DclfrprWjvzpMPmbT9-I1Wyxf5kW-yAwBossMthIhVArOLacG84rympOKGQJLWyEJWcmooaYk1traAKapkEIghEtSQouHybzXrbzeqkNwOx3Oymunfgc-rJUOnTONVbgWrNTQEK0RqQwQVGupDZIcQEQZj1qPvdYh-K-jbTu19cewj-crRCiOMApJROEeZYJv22Dr61YI1MVz1XuuLp6rP88ja9yzXPzjypCAMooF_gHFantR</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Yahui</creator><creator>Cao, Buyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9257-4893</orcidid><orcidid>https://orcid.org/0000-0002-6889-4763</orcidid></search><sort><creationdate>2020</creationdate><title>A Novel Ant Colony Optimization Algorithm With Levy Flight</title><author>Liu, Yahui ; Cao, Buyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c3e9222b877e75c37d57f74d6c41bed2916b65c5cb4eeefc06a58988223b4b1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Heuristic methods</topic><topic>Indexes</topic><topic>Levy distribution</topic><topic>Levy flight</topic><topic>Optimization</topic><topic>Performance enhancement</topic><topic>Random variables</topic><topic>Reinforcement learning</topic><topic>Solvers</topic><topic>Space exploration</topic><topic>Traveling salesman problem</topic><topic>Traveling salesman problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yahui</creatorcontrib><creatorcontrib>Cao, Buyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yahui</au><au>Cao, Buyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Ant Colony Optimization Algorithm With Levy Flight</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>67205</spage><epage>67213</epage><pages>67205-67213</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Ant Colony Optimization (ACO) is a widely applied meta-heuristic algorithm. Little researches focused on the candidate selection mechanism, which was developed based on the simple uniform distribution. This paper employs the Levy flight mechanism based on Levy distribution to the candidate selection process and takes advantage of Levy flight that not only guarantees the search speed but also extends the searching space to improve the performance of ACO. Levy ACO incorporating with Levy flight developed on the top of Max-min ACO. According to the computational experiments, the performance of Levy ACO is significantly better than the original Max-min ACO and some latest Traveling Salesman Problem (TSP) solvers.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2985498</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9257-4893</orcidid><orcidid>https://orcid.org/0000-0002-6889-4763</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.67205-67213
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3f86ba1c4aa24dc085aa9ac297012567
source IEEE Xplore Open Access Journals
subjects Algorithms
Ant colony optimization
Heuristic methods
Indexes
Levy distribution
Levy flight
Optimization
Performance enhancement
Random variables
Reinforcement learning
Solvers
Space exploration
Traveling salesman problem
Traveling salesman problems
title A Novel Ant Colony Optimization Algorithm With Levy Flight
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Ant%20Colony%20Optimization%20Algorithm%20With%20Levy%20Flight&rft.jtitle=IEEE%20access&rft.au=Liu,%20Yahui&rft.date=2020&rft.volume=8&rft.spage=67205&rft.epage=67213&rft.pages=67205-67213&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2985498&rft_dat=%3Cproquest_doaj_%3E2453701514%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-c3e9222b877e75c37d57f74d6c41bed2916b65c5cb4eeefc06a58988223b4b1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2453701514&rft_id=info:pmid/&rft_ieee_id=9056538&rfr_iscdi=true