Loading…
A Novel Ant Colony Optimization Algorithm With Levy Flight
Ant Colony Optimization (ACO) is a widely applied meta-heuristic algorithm. Little researches focused on the candidate selection mechanism, which was developed based on the simple uniform distribution. This paper employs the Levy flight mechanism based on Levy distribution to the candidate selection...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.67205-67213 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-c3e9222b877e75c37d57f74d6c41bed2916b65c5cb4eeefc06a58988223b4b1e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-c3e9222b877e75c37d57f74d6c41bed2916b65c5cb4eeefc06a58988223b4b1e3 |
container_end_page | 67213 |
container_issue | |
container_start_page | 67205 |
container_title | IEEE access |
container_volume | 8 |
creator | Liu, Yahui Cao, Buyang |
description | Ant Colony Optimization (ACO) is a widely applied meta-heuristic algorithm. Little researches focused on the candidate selection mechanism, which was developed based on the simple uniform distribution. This paper employs the Levy flight mechanism based on Levy distribution to the candidate selection process and takes advantage of Levy flight that not only guarantees the search speed but also extends the searching space to improve the performance of ACO. Levy ACO incorporating with Levy flight developed on the top of Max-min ACO. According to the computational experiments, the performance of Levy ACO is significantly better than the original Max-min ACO and some latest Traveling Salesman Problem (TSP) solvers. |
doi_str_mv | 10.1109/ACCESS.2020.2985498 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3f86ba1c4aa24dc085aa9ac297012567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9056538</ieee_id><doaj_id>oai_doaj_org_article_3f86ba1c4aa24dc085aa9ac297012567</doaj_id><sourcerecordid>2453701514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c3e9222b877e75c37d57f74d6c41bed2916b65c5cb4eeefc06a58988223b4b1e3</originalsourceid><addsrcrecordid>eNpNUE1rwkAQDaWFivUXeAn0HLvfH72FoK0g9WBLj8tms9GV6NpNFOyv79oU6RxmhuG9NzMvScYQTCAE8ikviulqNUEAgQmSghIpbpIBgkxmmGJ2-6-_T0ZtuwUxRBxRPkie8_TNn2yT5vsuLXzj9-d0eejczn3rzvl9mjdrH1y32aWfMacLezqns8atN91DclfrprWjvzpMPmbT9-I1Wyxf5kW-yAwBossMthIhVArOLacG84rympOKGQJLWyEJWcmooaYk1traAKapkEIghEtSQouHybzXrbzeqkNwOx3Oymunfgc-rJUOnTONVbgWrNTQEK0RqQwQVGupDZIcQEQZj1qPvdYh-K-jbTu19cewj-crRCiOMApJROEeZYJv22Dr61YI1MVz1XuuLp6rP88ja9yzXPzjypCAMooF_gHFantR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453701514</pqid></control><display><type>article</type><title>A Novel Ant Colony Optimization Algorithm With Levy Flight</title><source>IEEE Xplore Open Access Journals</source><creator>Liu, Yahui ; Cao, Buyang</creator><creatorcontrib>Liu, Yahui ; Cao, Buyang</creatorcontrib><description>Ant Colony Optimization (ACO) is a widely applied meta-heuristic algorithm. Little researches focused on the candidate selection mechanism, which was developed based on the simple uniform distribution. This paper employs the Levy flight mechanism based on Levy distribution to the candidate selection process and takes advantage of Levy flight that not only guarantees the search speed but also extends the searching space to improve the performance of ACO. Levy ACO incorporating with Levy flight developed on the top of Max-min ACO. According to the computational experiments, the performance of Levy ACO is significantly better than the original Max-min ACO and some latest Traveling Salesman Problem (TSP) solvers.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2985498</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Ant colony optimization ; Heuristic methods ; Indexes ; Levy distribution ; Levy flight ; Optimization ; Performance enhancement ; Random variables ; Reinforcement learning ; Solvers ; Space exploration ; Traveling salesman problem ; Traveling salesman problems</subject><ispartof>IEEE access, 2020, Vol.8, p.67205-67213</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c3e9222b877e75c37d57f74d6c41bed2916b65c5cb4eeefc06a58988223b4b1e3</citedby><cites>FETCH-LOGICAL-c408t-c3e9222b877e75c37d57f74d6c41bed2916b65c5cb4eeefc06a58988223b4b1e3</cites><orcidid>0000-0001-9257-4893 ; 0000-0002-6889-4763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9056538$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Liu, Yahui</creatorcontrib><creatorcontrib>Cao, Buyang</creatorcontrib><title>A Novel Ant Colony Optimization Algorithm With Levy Flight</title><title>IEEE access</title><addtitle>Access</addtitle><description>Ant Colony Optimization (ACO) is a widely applied meta-heuristic algorithm. Little researches focused on the candidate selection mechanism, which was developed based on the simple uniform distribution. This paper employs the Levy flight mechanism based on Levy distribution to the candidate selection process and takes advantage of Levy flight that not only guarantees the search speed but also extends the searching space to improve the performance of ACO. Levy ACO incorporating with Levy flight developed on the top of Max-min ACO. According to the computational experiments, the performance of Levy ACO is significantly better than the original Max-min ACO and some latest Traveling Salesman Problem (TSP) solvers.</description><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Heuristic methods</subject><subject>Indexes</subject><subject>Levy distribution</subject><subject>Levy flight</subject><subject>Optimization</subject><subject>Performance enhancement</subject><subject>Random variables</subject><subject>Reinforcement learning</subject><subject>Solvers</subject><subject>Space exploration</subject><subject>Traveling salesman problem</subject><subject>Traveling salesman problems</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1rwkAQDaWFivUXeAn0HLvfH72FoK0g9WBLj8tms9GV6NpNFOyv79oU6RxmhuG9NzMvScYQTCAE8ikviulqNUEAgQmSghIpbpIBgkxmmGJ2-6-_T0ZtuwUxRBxRPkie8_TNn2yT5vsuLXzj9-d0eejczn3rzvl9mjdrH1y32aWfMacLezqns8atN91DclfrprWjvzpMPmbT9-I1Wyxf5kW-yAwBossMthIhVArOLacG84rympOKGQJLWyEJWcmooaYk1traAKapkEIghEtSQouHybzXrbzeqkNwOx3Oymunfgc-rJUOnTONVbgWrNTQEK0RqQwQVGupDZIcQEQZj1qPvdYh-K-jbTu19cewj-crRCiOMApJROEeZYJv22Dr61YI1MVz1XuuLp6rP88ja9yzXPzjypCAMooF_gHFantR</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Yahui</creator><creator>Cao, Buyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9257-4893</orcidid><orcidid>https://orcid.org/0000-0002-6889-4763</orcidid></search><sort><creationdate>2020</creationdate><title>A Novel Ant Colony Optimization Algorithm With Levy Flight</title><author>Liu, Yahui ; Cao, Buyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c3e9222b877e75c37d57f74d6c41bed2916b65c5cb4eeefc06a58988223b4b1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Heuristic methods</topic><topic>Indexes</topic><topic>Levy distribution</topic><topic>Levy flight</topic><topic>Optimization</topic><topic>Performance enhancement</topic><topic>Random variables</topic><topic>Reinforcement learning</topic><topic>Solvers</topic><topic>Space exploration</topic><topic>Traveling salesman problem</topic><topic>Traveling salesman problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yahui</creatorcontrib><creatorcontrib>Cao, Buyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yahui</au><au>Cao, Buyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Ant Colony Optimization Algorithm With Levy Flight</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>67205</spage><epage>67213</epage><pages>67205-67213</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Ant Colony Optimization (ACO) is a widely applied meta-heuristic algorithm. Little researches focused on the candidate selection mechanism, which was developed based on the simple uniform distribution. This paper employs the Levy flight mechanism based on Levy distribution to the candidate selection process and takes advantage of Levy flight that not only guarantees the search speed but also extends the searching space to improve the performance of ACO. Levy ACO incorporating with Levy flight developed on the top of Max-min ACO. According to the computational experiments, the performance of Levy ACO is significantly better than the original Max-min ACO and some latest Traveling Salesman Problem (TSP) solvers.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2985498</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9257-4893</orcidid><orcidid>https://orcid.org/0000-0002-6889-4763</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.67205-67213 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3f86ba1c4aa24dc085aa9ac297012567 |
source | IEEE Xplore Open Access Journals |
subjects | Algorithms Ant colony optimization Heuristic methods Indexes Levy distribution Levy flight Optimization Performance enhancement Random variables Reinforcement learning Solvers Space exploration Traveling salesman problem Traveling salesman problems |
title | A Novel Ant Colony Optimization Algorithm With Levy Flight |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Ant%20Colony%20Optimization%20Algorithm%20With%20Levy%20Flight&rft.jtitle=IEEE%20access&rft.au=Liu,%20Yahui&rft.date=2020&rft.volume=8&rft.spage=67205&rft.epage=67213&rft.pages=67205-67213&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2985498&rft_dat=%3Cproquest_doaj_%3E2453701514%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-c3e9222b877e75c37d57f74d6c41bed2916b65c5cb4eeefc06a58988223b4b1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2453701514&rft_id=info:pmid/&rft_ieee_id=9056538&rfr_iscdi=true |