Loading…

Selective Oxidation of Crude Glycerol to Dihydroxyacetone in a Biphasic Photoreactor

In this paper, the first biphasic photoreactor was introduced and utilized for the conversion of glycerol to glyceraldehyde (GAD) and dihydroxyacetone (DHA) using water and ethyl acetate as dispersed (active) and continuous (inactive) phases, respectively. Increasing the ethyl acetate content in the...

Full description

Saved in:
Bibliographic Details
Published in:Catalysts 2020-04, Vol.10 (4), p.360
Main Authors: Imbault, Alexander Luis, Farnood, Ramin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the first biphasic photoreactor was introduced and utilized for the conversion of glycerol to glyceraldehyde (GAD) and dihydroxyacetone (DHA) using water and ethyl acetate as dispersed (active) and continuous (inactive) phases, respectively. Increasing the ethyl acetate content in the reactor improved the DHA yield; however, the optimal DHA selectivity was obtained at an ethyl acetate to water ratio of 90:10 (vol/vol). Compared to a monophasic photoreactor containing only water and identical amounts of glycerol and photocatalyst, the biphasic reactor containing 90 vol % ethyl acetate increased the DHA yield by a factor of 2.9 (from 4.5% to 13%) and the concentration of DHA by approximately 14 times (from 0.08 mM to 1.1 mM) after 240 min. Additionally, photocatalytic conversion of crude glycerol extracted using a 90:10 (vol/vol) ethyl acetate-water mixture showed a similar DHA conversion and yield to that of pure glycerol.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal10040360