Loading…
Blood-Brain Barrier Permeable Chitosan Oligosaccharides Interfere with β-Amyloid Aggregation and Alleviate β-Amyloid Protein Mediated Neurotoxicity and Neuroinflammation in a Dose- and Degree of Polymerization-Dependent Manner
It is proven that β-amyloid (Aβ) aggregates containing cross-β-sheet structures led to oxidative stress, neuroinflammation, and neuronal loss via multiple pathways. Therefore, reduction of Aβ neurotoxicity via inhibiting aggregation of Aβ or dissociating toxic Aβ aggregates into nontoxic forms might...
Saved in:
Published in: | Marine drugs 2020-09, Vol.18 (10), p.488 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c472t-cb44456e59ed68678d6dbfae29d904da97d1ad25cf265284741331aaee7767363 |
---|---|
cites | cdi_FETCH-LOGICAL-c472t-cb44456e59ed68678d6dbfae29d904da97d1ad25cf265284741331aaee7767363 |
container_end_page | |
container_issue | 10 |
container_start_page | 488 |
container_title | Marine drugs |
container_volume | 18 |
creator | Zhu, Limeng Li, Ruilian Jiao, Siming Wei, Jinhua Yan, Yalu Wang, Zhuo A Li, Jianjun Du, Yuguang |
description | It is proven that β-amyloid (Aβ) aggregates containing cross-β-sheet structures led to oxidative stress, neuroinflammation, and neuronal loss via multiple pathways. Therefore, reduction of Aβ neurotoxicity via inhibiting aggregation of Aβ or dissociating toxic Aβ aggregates into nontoxic forms might be effective therapeutic methods for Alzheimer's disease (AD) treatment. This study was designed to explore interference of chitosan oligosaccharides (COS) on β-(1-42)-amyloid protein (Aβ42) aggregation and Aβ42-induced cytotoxicity. Here it was demonstrated that COS showed good blood-brain barrier (BBB) penetration ability in vitro and in vivo. The experimental results showed that COS efficiently interfered with Aβ42 aggregation in dose- and degree of polymerization (DP)-dependent manners, and COS monomer with DP6 showed the best effect on preventing conformational transition into β-sheet-rich structures. Based on the binding affinity analysis by microscale thermophoresis (MST), it was confirmed that COS could directly bind with Aβ42 in a DP-dependent manner. Our findings demonstrated that different performance of COS monomers with different DPs against Aβ42 assembly was, to some extent, attributable to their different binding capacities with Aβ42. As a result, COS significantly ameliorated Aβ42-induced cytotoxicity. Taken together, our studies would point towards a potential role of COS in treatment of AD. |
doi_str_mv | 10.3390/md18100488 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3fea95581fdc4b3888c937ade948d93d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3fea95581fdc4b3888c937ade948d93d</doaj_id><sourcerecordid>2548646887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-cb44456e59ed68678d6dbfae29d904da97d1ad25cf265284741331aaee7767363</originalsourceid><addsrcrecordid>eNpVks9uEzEQxlcIREvhwgMgS9wqLXjXXq99QWoS_kRqaQ5wXk3s2Y2jXTt4nUJ4LB6Ep-BBcJNS0pPH3_z8fR5psuxlQd8wpujbwRSyoJRL-Sg7LYSgeZLrx0f1SfZsHNeUskoq_jQ7YaVSpaT0NPsz6b03-SSAdWQCIVgMZIFhQFj2SKYrG_0Ijlz3tkuF1isI1uBI5i5iaDEg-W7jivz-lV8Mu95bQy66LmAH0XpHwKV73-ONhYjH0CL4iCnyCs1ty5DPuE2S_2G1jbv9u71iXdvDMBzcEg9k5kfM98AMUxAS35KF73cDBvtzz-Uz3KAz6CK5AucwPM-etNCP-OLuPMu-fnj_Zfopv7z-OJ9eXOaa12XM9ZJzXgmsFBohRS2NMMsWsFRGUW5A1aYAU1a6LUVVSl7zgrECALGuRc0EO8vmB1_jYd1sgh0g7BoPttkLPnQNhGh1jw1rEVRVyaI1mi-ZlFIrVoNBxaVRzCSvdwevzXY5oNFpmgD9A9OHHWdXTedvmlpUVNIiGby-Mwj-2xbH2Kz9Nrg0f1NWXAoupKwTdX6gdPDjGLC9Tyhoc7tdzf_tSvCr4z_do__Wif0F9trR5Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548646887</pqid></control><display><type>article</type><title>Blood-Brain Barrier Permeable Chitosan Oligosaccharides Interfere with β-Amyloid Aggregation and Alleviate β-Amyloid Protein Mediated Neurotoxicity and Neuroinflammation in a Dose- and Degree of Polymerization-Dependent Manner</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Zhu, Limeng ; Li, Ruilian ; Jiao, Siming ; Wei, Jinhua ; Yan, Yalu ; Wang, Zhuo A ; Li, Jianjun ; Du, Yuguang</creator><creatorcontrib>Zhu, Limeng ; Li, Ruilian ; Jiao, Siming ; Wei, Jinhua ; Yan, Yalu ; Wang, Zhuo A ; Li, Jianjun ; Du, Yuguang</creatorcontrib><description>It is proven that β-amyloid (Aβ) aggregates containing cross-β-sheet structures led to oxidative stress, neuroinflammation, and neuronal loss via multiple pathways. Therefore, reduction of Aβ neurotoxicity via inhibiting aggregation of Aβ or dissociating toxic Aβ aggregates into nontoxic forms might be effective therapeutic methods for Alzheimer's disease (AD) treatment. This study was designed to explore interference of chitosan oligosaccharides (COS) on β-(1-42)-amyloid protein (Aβ42) aggregation and Aβ42-induced cytotoxicity. Here it was demonstrated that COS showed good blood-brain barrier (BBB) penetration ability in vitro and in vivo. The experimental results showed that COS efficiently interfered with Aβ42 aggregation in dose- and degree of polymerization (DP)-dependent manners, and COS monomer with DP6 showed the best effect on preventing conformational transition into β-sheet-rich structures. Based on the binding affinity analysis by microscale thermophoresis (MST), it was confirmed that COS could directly bind with Aβ42 in a DP-dependent manner. Our findings demonstrated that different performance of COS monomers with different DPs against Aβ42 assembly was, to some extent, attributable to their different binding capacities with Aβ42. As a result, COS significantly ameliorated Aβ42-induced cytotoxicity. Taken together, our studies would point towards a potential role of COS in treatment of AD.</description><identifier>ISSN: 1660-3397</identifier><identifier>EISSN: 1660-3397</identifier><identifier>DOI: 10.3390/md18100488</identifier><identifier>PMID: 32992800</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Agglomeration ; Aggregates ; Aggregation ; Alzheimer's disease ; Alzheimers disease ; Amyloid beta-Peptides - metabolism ; Animals ; Aβ42 ; Binding ; binding affinity ; Biocompatibility ; Blood ; Blood-brain barrier ; Blood-Brain Barrier - metabolism ; Brain ; Cell Line ; Chitosan ; Chitosan - chemistry ; chitosan oligosaccharides ; Clinical trials ; Cytotoxicity ; Degree of polymerization ; Dose-Response Relationship, Drug ; Glucose ; Inflammation ; Male ; Medical research ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Molecular weight ; Monomers ; Morphology ; Neurodegenerative diseases ; Neurotoxicity ; Oligosaccharides ; Oligosaccharides - administration & dosage ; Oligosaccharides - pharmacokinetics ; Oligosaccharides - pharmacology ; Oxidative stress ; Oxidative Stress - drug effects ; Peptide Fragments - metabolism ; Peptides ; Permeability ; Polymerization ; Proteins ; Spectrum analysis ; Thermophoresis ; Tissue Distribution ; Toxicity ; β-Amyloid</subject><ispartof>Marine drugs, 2020-09, Vol.18 (10), p.488</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-cb44456e59ed68678d6dbfae29d904da97d1ad25cf265284741331aaee7767363</citedby><cites>FETCH-LOGICAL-c472t-cb44456e59ed68678d6dbfae29d904da97d1ad25cf265284741331aaee7767363</cites><orcidid>0000-0003-0270-3124 ; 0000-0003-4114-6148 ; 0000-0002-4707-036X ; 0000-0001-9952-6093 ; 0000-0002-2842-5663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548646887/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548646887?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32992800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Limeng</creatorcontrib><creatorcontrib>Li, Ruilian</creatorcontrib><creatorcontrib>Jiao, Siming</creatorcontrib><creatorcontrib>Wei, Jinhua</creatorcontrib><creatorcontrib>Yan, Yalu</creatorcontrib><creatorcontrib>Wang, Zhuo A</creatorcontrib><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Du, Yuguang</creatorcontrib><title>Blood-Brain Barrier Permeable Chitosan Oligosaccharides Interfere with β-Amyloid Aggregation and Alleviate β-Amyloid Protein Mediated Neurotoxicity and Neuroinflammation in a Dose- and Degree of Polymerization-Dependent Manner</title><title>Marine drugs</title><addtitle>Mar Drugs</addtitle><description>It is proven that β-amyloid (Aβ) aggregates containing cross-β-sheet structures led to oxidative stress, neuroinflammation, and neuronal loss via multiple pathways. Therefore, reduction of Aβ neurotoxicity via inhibiting aggregation of Aβ or dissociating toxic Aβ aggregates into nontoxic forms might be effective therapeutic methods for Alzheimer's disease (AD) treatment. This study was designed to explore interference of chitosan oligosaccharides (COS) on β-(1-42)-amyloid protein (Aβ42) aggregation and Aβ42-induced cytotoxicity. Here it was demonstrated that COS showed good blood-brain barrier (BBB) penetration ability in vitro and in vivo. The experimental results showed that COS efficiently interfered with Aβ42 aggregation in dose- and degree of polymerization (DP)-dependent manners, and COS monomer with DP6 showed the best effect on preventing conformational transition into β-sheet-rich structures. Based on the binding affinity analysis by microscale thermophoresis (MST), it was confirmed that COS could directly bind with Aβ42 in a DP-dependent manner. Our findings demonstrated that different performance of COS monomers with different DPs against Aβ42 assembly was, to some extent, attributable to their different binding capacities with Aβ42. As a result, COS significantly ameliorated Aβ42-induced cytotoxicity. Taken together, our studies would point towards a potential role of COS in treatment of AD.</description><subject>Agglomeration</subject><subject>Aggregates</subject><subject>Aggregation</subject><subject>Alzheimer's disease</subject><subject>Alzheimers disease</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Animals</subject><subject>Aβ42</subject><subject>Binding</subject><subject>binding affinity</subject><subject>Biocompatibility</subject><subject>Blood</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain</subject><subject>Cell Line</subject><subject>Chitosan</subject><subject>Chitosan - chemistry</subject><subject>chitosan oligosaccharides</subject><subject>Clinical trials</subject><subject>Cytotoxicity</subject><subject>Degree of polymerization</subject><subject>Dose-Response Relationship, Drug</subject><subject>Glucose</subject><subject>Inflammation</subject><subject>Male</subject><subject>Medical research</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Molecular weight</subject><subject>Monomers</subject><subject>Morphology</subject><subject>Neurodegenerative diseases</subject><subject>Neurotoxicity</subject><subject>Oligosaccharides</subject><subject>Oligosaccharides - administration & dosage</subject><subject>Oligosaccharides - pharmacokinetics</subject><subject>Oligosaccharides - pharmacology</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Peptide Fragments - metabolism</subject><subject>Peptides</subject><subject>Permeability</subject><subject>Polymerization</subject><subject>Proteins</subject><subject>Spectrum analysis</subject><subject>Thermophoresis</subject><subject>Tissue Distribution</subject><subject>Toxicity</subject><subject>β-Amyloid</subject><issn>1660-3397</issn><issn>1660-3397</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVks9uEzEQxlcIREvhwgMgS9wqLXjXXq99QWoS_kRqaQ5wXk3s2Y2jXTt4nUJ4LB6Ep-BBcJNS0pPH3_z8fR5psuxlQd8wpujbwRSyoJRL-Sg7LYSgeZLrx0f1SfZsHNeUskoq_jQ7YaVSpaT0NPsz6b03-SSAdWQCIVgMZIFhQFj2SKYrG_0Ijlz3tkuF1isI1uBI5i5iaDEg-W7jivz-lV8Mu95bQy66LmAH0XpHwKV73-ONhYjH0CL4iCnyCs1ty5DPuE2S_2G1jbv9u71iXdvDMBzcEg9k5kfM98AMUxAS35KF73cDBvtzz-Uz3KAz6CK5AucwPM-etNCP-OLuPMu-fnj_Zfopv7z-OJ9eXOaa12XM9ZJzXgmsFBohRS2NMMsWsFRGUW5A1aYAU1a6LUVVSl7zgrECALGuRc0EO8vmB1_jYd1sgh0g7BoPttkLPnQNhGh1jw1rEVRVyaI1mi-ZlFIrVoNBxaVRzCSvdwevzXY5oNFpmgD9A9OHHWdXTedvmlpUVNIiGby-Mwj-2xbH2Kz9Nrg0f1NWXAoupKwTdX6gdPDjGLC9Tyhoc7tdzf_tSvCr4z_do__Wif0F9trR5Q</recordid><startdate>20200925</startdate><enddate>20200925</enddate><creator>Zhu, Limeng</creator><creator>Li, Ruilian</creator><creator>Jiao, Siming</creator><creator>Wei, Jinhua</creator><creator>Yan, Yalu</creator><creator>Wang, Zhuo A</creator><creator>Li, Jianjun</creator><creator>Du, Yuguang</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T7</scope><scope>7TN</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.F</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0270-3124</orcidid><orcidid>https://orcid.org/0000-0003-4114-6148</orcidid><orcidid>https://orcid.org/0000-0002-4707-036X</orcidid><orcidid>https://orcid.org/0000-0001-9952-6093</orcidid><orcidid>https://orcid.org/0000-0002-2842-5663</orcidid></search><sort><creationdate>20200925</creationdate><title>Blood-Brain Barrier Permeable Chitosan Oligosaccharides Interfere with β-Amyloid Aggregation and Alleviate β-Amyloid Protein Mediated Neurotoxicity and Neuroinflammation in a Dose- and Degree of Polymerization-Dependent Manner</title><author>Zhu, Limeng ; Li, Ruilian ; Jiao, Siming ; Wei, Jinhua ; Yan, Yalu ; Wang, Zhuo A ; Li, Jianjun ; Du, Yuguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-cb44456e59ed68678d6dbfae29d904da97d1ad25cf265284741331aaee7767363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agglomeration</topic><topic>Aggregates</topic><topic>Aggregation</topic><topic>Alzheimer's disease</topic><topic>Alzheimers disease</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Animals</topic><topic>Aβ42</topic><topic>Binding</topic><topic>binding affinity</topic><topic>Biocompatibility</topic><topic>Blood</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain</topic><topic>Cell Line</topic><topic>Chitosan</topic><topic>Chitosan - chemistry</topic><topic>chitosan oligosaccharides</topic><topic>Clinical trials</topic><topic>Cytotoxicity</topic><topic>Degree of polymerization</topic><topic>Dose-Response Relationship, Drug</topic><topic>Glucose</topic><topic>Inflammation</topic><topic>Male</topic><topic>Medical research</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Molecular weight</topic><topic>Monomers</topic><topic>Morphology</topic><topic>Neurodegenerative diseases</topic><topic>Neurotoxicity</topic><topic>Oligosaccharides</topic><topic>Oligosaccharides - administration & dosage</topic><topic>Oligosaccharides - pharmacokinetics</topic><topic>Oligosaccharides - pharmacology</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Peptide Fragments - metabolism</topic><topic>Peptides</topic><topic>Permeability</topic><topic>Polymerization</topic><topic>Proteins</topic><topic>Spectrum analysis</topic><topic>Thermophoresis</topic><topic>Tissue Distribution</topic><topic>Toxicity</topic><topic>β-Amyloid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Limeng</creatorcontrib><creatorcontrib>Li, Ruilian</creatorcontrib><creatorcontrib>Jiao, Siming</creatorcontrib><creatorcontrib>Wei, Jinhua</creatorcontrib><creatorcontrib>Yan, Yalu</creatorcontrib><creatorcontrib>Wang, Zhuo A</creatorcontrib><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Du, Yuguang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Marine drugs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Limeng</au><au>Li, Ruilian</au><au>Jiao, Siming</au><au>Wei, Jinhua</au><au>Yan, Yalu</au><au>Wang, Zhuo A</au><au>Li, Jianjun</au><au>Du, Yuguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blood-Brain Barrier Permeable Chitosan Oligosaccharides Interfere with β-Amyloid Aggregation and Alleviate β-Amyloid Protein Mediated Neurotoxicity and Neuroinflammation in a Dose- and Degree of Polymerization-Dependent Manner</atitle><jtitle>Marine drugs</jtitle><addtitle>Mar Drugs</addtitle><date>2020-09-25</date><risdate>2020</risdate><volume>18</volume><issue>10</issue><spage>488</spage><pages>488-</pages><issn>1660-3397</issn><eissn>1660-3397</eissn><abstract>It is proven that β-amyloid (Aβ) aggregates containing cross-β-sheet structures led to oxidative stress, neuroinflammation, and neuronal loss via multiple pathways. Therefore, reduction of Aβ neurotoxicity via inhibiting aggregation of Aβ or dissociating toxic Aβ aggregates into nontoxic forms might be effective therapeutic methods for Alzheimer's disease (AD) treatment. This study was designed to explore interference of chitosan oligosaccharides (COS) on β-(1-42)-amyloid protein (Aβ42) aggregation and Aβ42-induced cytotoxicity. Here it was demonstrated that COS showed good blood-brain barrier (BBB) penetration ability in vitro and in vivo. The experimental results showed that COS efficiently interfered with Aβ42 aggregation in dose- and degree of polymerization (DP)-dependent manners, and COS monomer with DP6 showed the best effect on preventing conformational transition into β-sheet-rich structures. Based on the binding affinity analysis by microscale thermophoresis (MST), it was confirmed that COS could directly bind with Aβ42 in a DP-dependent manner. Our findings demonstrated that different performance of COS monomers with different DPs against Aβ42 assembly was, to some extent, attributable to their different binding capacities with Aβ42. As a result, COS significantly ameliorated Aβ42-induced cytotoxicity. Taken together, our studies would point towards a potential role of COS in treatment of AD.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32992800</pmid><doi>10.3390/md18100488</doi><orcidid>https://orcid.org/0000-0003-0270-3124</orcidid><orcidid>https://orcid.org/0000-0003-4114-6148</orcidid><orcidid>https://orcid.org/0000-0002-4707-036X</orcidid><orcidid>https://orcid.org/0000-0001-9952-6093</orcidid><orcidid>https://orcid.org/0000-0002-2842-5663</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-3397 |
ispartof | Marine drugs, 2020-09, Vol.18 (10), p.488 |
issn | 1660-3397 1660-3397 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3fea95581fdc4b3888c937ade948d93d |
source | Publicly Available Content Database; PubMed Central |
subjects | Agglomeration Aggregates Aggregation Alzheimer's disease Alzheimers disease Amyloid beta-Peptides - metabolism Animals Aβ42 Binding binding affinity Biocompatibility Blood Blood-brain barrier Blood-Brain Barrier - metabolism Brain Cell Line Chitosan Chitosan - chemistry chitosan oligosaccharides Clinical trials Cytotoxicity Degree of polymerization Dose-Response Relationship, Drug Glucose Inflammation Male Medical research Mice Mice, Inbred BALB C Mice, Nude Molecular weight Monomers Morphology Neurodegenerative diseases Neurotoxicity Oligosaccharides Oligosaccharides - administration & dosage Oligosaccharides - pharmacokinetics Oligosaccharides - pharmacology Oxidative stress Oxidative Stress - drug effects Peptide Fragments - metabolism Peptides Permeability Polymerization Proteins Spectrum analysis Thermophoresis Tissue Distribution Toxicity β-Amyloid |
title | Blood-Brain Barrier Permeable Chitosan Oligosaccharides Interfere with β-Amyloid Aggregation and Alleviate β-Amyloid Protein Mediated Neurotoxicity and Neuroinflammation in a Dose- and Degree of Polymerization-Dependent Manner |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blood-Brain%20Barrier%20Permeable%20Chitosan%20Oligosaccharides%20Interfere%20with%20%CE%B2-Amyloid%20Aggregation%20and%20Alleviate%20%CE%B2-Amyloid%20Protein%20Mediated%20Neurotoxicity%20and%20Neuroinflammation%20in%20a%20Dose-%20and%20Degree%20of%20Polymerization-Dependent%20Manner&rft.jtitle=Marine%20drugs&rft.au=Zhu,%20Limeng&rft.date=2020-09-25&rft.volume=18&rft.issue=10&rft.spage=488&rft.pages=488-&rft.issn=1660-3397&rft.eissn=1660-3397&rft_id=info:doi/10.3390/md18100488&rft_dat=%3Cproquest_doaj_%3E2548646887%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-cb44456e59ed68678d6dbfae29d904da97d1ad25cf265284741331aaee7767363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548646887&rft_id=info:pmid/32992800&rfr_iscdi=true |