Loading…

Coulomb Problem for Classical Spinning Particles

We consider the motion of a weakly relativistic charged particle with an arbitrary spin in central potential e/r in terms of classical mechanics. We show that the spin–orbital interaction causes the precession of the plane of orbit around the vector of total angular momentum. The angular velocity of...

Full description

Saved in:
Bibliographic Details
Published in:Universe (Basel) 2023-05, Vol.9 (5), p.219
Main Authors: Kaparulin, Dmitry S., Sinelnikov, Nikita A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the motion of a weakly relativistic charged particle with an arbitrary spin in central potential e/r in terms of classical mechanics. We show that the spin–orbital interaction causes the precession of the plane of orbit around the vector of total angular momentum. The angular velocity of precession depends on the distance of the particle from the centre. The effective potential for in-plane motion is central, with the corrections to Coulomb terms coming from spin–orbital interaction. The possible orbits of a quantum particle are determined by the Bohr–Sommerfeld quantization rule. We give examples of orbits corresponding to small quantum numbers, which were obtained by numerical integration of equations of motion. The energies of stationary states are determined by spin–orbital interaction.
ISSN:2218-1997
2218-1997
DOI:10.3390/universe9050219