Loading…
Modified the optical and electrical properties of CR-39 by gamma ray irradiation
The radiation technique is a useful technology technique to induce suitable modifications of the polymeric materials. In the present work, poly allyl diglycol carbonate (CR-39) solid state nuclear track detector samples were irradiated using different doses (150–950 kGy) of gamma ray irradiations. T...
Saved in:
Published in: | Journal of radiation research and applied sciences 2014-07, Vol.7 (3), p.286-291 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The radiation technique is a useful technology technique to induce suitable modifications of the polymeric materials. In the present work, poly allyl diglycol carbonate (CR-39) solid state nuclear track detector samples were irradiated using different doses (150–950 kGy) of gamma ray irradiations. The effect of gamma ray irradiations on the optical and electrical, properties of CR-39 was investigated. The obtained results showed a decrease in the optical energy gap with increasing the gamma dose. Increase in the numbers of carbon atoms (N) in a formed cluster with increasing the irradiation dose was observed. Meanwhile, an increase in the Ac conductivity was obtained with increasing the gamma dose. Also, the variation in the dielectric constant and loss with irradiation dose was studied at the room temperature. The results indicate that the gamma ray irradiations in the dose range 150–950 kGy enhance the optical and electrical properties of the CR-39 polymer samples. |
---|---|
ISSN: | 1687-8507 1687-8507 |
DOI: | 10.1016/j.jrras.2014.05.002 |