Loading…
Individualized psychiatric imaging based on inter-subject neural synchronization in movie watching
The individual heterogeneity is a challenge to the prosperous promises of cutting-edge neuroimaging techniques for better diagnosis and early detection of psychiatric disorders. Individuals with similar clinical manifestations may result from very different pathophysiology. Conventional approaches b...
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Fla.), 2020-08, Vol.216, p.116227-116227, Article 116227 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The individual heterogeneity is a challenge to the prosperous promises of cutting-edge neuroimaging techniques for better diagnosis and early detection of psychiatric disorders. Individuals with similar clinical manifestations may result from very different pathophysiology. Conventional approaches based on comparing group-averages provide insufficient information to support the individualized diagnosis. Here we present an individualized imaging methodology that combines naturalistic imaging and the normative model. This paradigm adopts video clips with rich cognitive, social, and emotional contents to evoke synchronized brain dynamics of healthy participants and builds a spatiotemporal response norm. By comparing individual brain responses with the response norm, we could recognize patients using machine learning techniques. We applied this methodology to recognize first-episode drug-naïve schizophrenia patients in a dataset containing 72 patients and 54 healthy controls. Some segments of the video evoked more synchronized brain activity in the healthy controls than in the schizophrenia patients. We built a spatiotemporal response norm by averaging the brain responses of the healthy controls in a training set, and trained a classifier to recognize patients based on the differences between individual brain responses and the norm. The performance of the classifier was then evaluated using an independent test set. The mean accuracies from a 5-fold cross-validation were 0.71–0.78 depending on the parameters such as the number of features and the width of the sliding windows. These findings reflected the potential of this methodology towards a clinical tool for individualized diagnosis.
•An individualized psychiatric imaging methodology based on naturalistic stimuli.•A normative model that evokes synchronized brain responses in healthy individuals.•Comparing individual responses to the healthy norm avoids averaging across patients.•The performance to recognize schizophrenia patients shows its clinical potential. |
---|---|
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1016/j.neuroimage.2019.116227 |