Loading…

1,2,3-Triazolium-Derived Mesoionic Carbene Ligands Bearing Chiral Sulfur-Based Moieties: Synthesis, Catalytic Properties, and Their Role in Chirality Transfer

1,2,3-Triazole-derived mesoionic carbenes (MICs) having a chiral sulfur functional group at the C5 position are easily available through a CuAAC between chiral alkynyl sulfoxides and different azides. The MICs form complexes with several metals (Au, Ag, Ir, Rh, and Ru) that are enantiomerically pure...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2019-08, Vol.4 (8), p.12983-12994
Main Authors: Sierra, Miguel A, de la Torre, María C
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:1,2,3-Triazole-derived mesoionic carbenes (MICs) having a chiral sulfur functional group at the C5 position are easily available through a CuAAC between chiral alkynyl sulfoxides and different azides. The MICs form complexes with several metals (Au, Ag, Ir, Rh, and Ru) that are enantiomerically pure. Moreover, enantiomerically pure MIC sulfinilimines are obtained from the corresponding sulfoxide retaining the chirality. Through this article, the participation of sulfoxide moieties in different catalytic and chirality transfer processes, as well as in discovering mechanistically new processes will be shown. The role of the sulfur chiral moiety in catalytic cycloisomerization and cycloisomerization–dimerization processes using Au–MIC catalysts is dual. The sulfur functional group either stabilizes intermediates in the catalytic cycle, allowing for the reaction to occur or significantly increases the selectivity of the cyclization processes. 1,2,3-Triazole MICs having chiral sulfoxides at C5 are extremely efficient in preparing chiral at the metal complexes by C–H insertion processes. The chiral at the metal half-sandwich complexes, having the enantiopure sulfur chiral group unaltered, experiences different reactions with complete retention of the configuration. Finally, mechanistically new processes, like the desulfinilation of 1,2,3-triazolium salts in Ag–MIC complexes have been uncovered. These still-nascent classes of compounds will offer opportunities for the discovery of novel catalytic applications and to study new mechanistically sound processes.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.9b01285