Loading…

SPATS2L is a positive feedback regulator of the type I interferon signaling pathway and plays a vital role in lupus

Through genome-wide association studies (GWAS) and integrated expression quantitative trait locus (eQTL) analyses, numerous susceptibility genes ("eGenes", whose expressions are significantly associated with common variants) associated with systemic lupus erythematosus (SLE) have been iden...

Full description

Saved in:
Bibliographic Details
Published in:Acta biochimica et biophysica Sinica 2024-08, Vol.56, p.1659-1672
Main Authors: Chen, Mengke, Zhang, Yutong, Shi, Weiwen, Song, Xuejiao, Yang, Yue, Hou, Guojun, Ding, Huihua, Chen, Sheng, Yang, Wanling, Shen, Nan, Cui, Yong, Zuo, Xianbo, Tang, Yuanjia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Through genome-wide association studies (GWAS) and integrated expression quantitative trait locus (eQTL) analyses, numerous susceptibility genes ("eGenes", whose expressions are significantly associated with common variants) associated with systemic lupus erythematosus (SLE) have been identified. Notably, a subset of these eGenes is correlated with disease activity. However, the precise mechanisms through which these genes contribute to the initiation and progression of the disease remain to be fully elucidated. In this investigation, we initially identify SPATS2L as an SLE eGene correlated with disease activity. eSignaling and transcriptomic analyses suggest its involvement in the type I interferon (IFN) pathway. We observe a significant increase in SPATS2L expression following type I IFN stimulation, and the expression levels are dependent on both the concentration and duration of stimulation. Furthermore, through dual-luciferase reporter assays, western blot analysis, and imaging flow cytometry, we confirm that SPATS2L positively modulates the type I IFN pathway, acting as a positive feedback regulator. Notably, siRNA-mediated intervention targeting , an interferon-inducible gene, in peripheral blood mononuclear cells (PBMCs) from patients with SLE reverses the activation of the interferon pathway. In conclusion, our research highlights the pivotal role of SPATS2L as a positive-feedback regulatory molecule within the type I IFN pathway. Our findings suggest that SPATS2L plays a critical role in the onset and progression of SLE and may serve as a promising target for disease activity assessment and intervention strategies.
ISSN:1672-9145
1745-7270
1745-7270
DOI:10.3724/abbs.2024132