Loading…

Modelling and simulation of brinicle formation

Below the Arctic sea ice, under the right conditions, a flux of icy brine flows down into the sea. The icy brine has a much lower fusion point and is denser than normal seawater. As a result, it sinks while freezing everything around it, forming an ice channel called a brinicle (also known as ice st...

Full description

Saved in:
Bibliographic Details
Published in:Royal Society open science 2023-10, Vol.10 (10), p.230268
Main Authors: Gómez-Lozada, Felipe, Del Valle, Carlos Andrés, Jiménez-Paz, Julián David, Lazarov, Boyan S, Galvis, Juan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Below the Arctic sea ice, under the right conditions, a flux of icy brine flows down into the sea. The icy brine has a much lower fusion point and is denser than normal seawater. As a result, it sinks while freezing everything around it, forming an ice channel called a brinicle (also known as ice stalactite). In this paper, we develop a mathematical model for this phenomenon, assuming cylindrical symmetry. The fluid is considered to be viscous and quasi-stationary. The heat and salt transport are weakly coupled to the fluid motion and are modelled with the corresponding conservation equations, accounting for diffusive and convective effects. Finite-element discretization is employed to solve the coupled system of partial differential equations. We find that the model can capture the general behaviour of the physical system and generate brinicle-like structures while also recovering dendrite composition, which is a physically expected feature aligned with previous experimental results. This represents, to our knowledge, the first complete model proposed that captures the global structure of the physical phenomenon even though it has some discrepancies, such as brine accumulation.
ISSN:2054-5703
2054-5703
DOI:10.1098/rsos.230268