Loading…

Indoor Area Estimation System Using RSSI-Measuring Handheld Reader Utilizing Directional Reference RFID Tags and Machine Learning

Achieving efficient warehouse operations for product management in an indoor environment has recently become a challenging issue. If a user can store a product in a vacant place and then roughly localize the product with a simple system, this localization system will enable efficient and flexible ar...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.157872-157887
Main Authors: Hadi, Danang Kumara, Song, Zequn, Rahmadya, Budi, Kozume, Shogo, Sumiya, Tomonori, Sun, Ran, Takeda, Shigeki, Wang, Xiaoyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c244t-93974c764a891dfebf215221cc776201577a4411c57f0a05e3e7d4f2c7c6fc3f3
container_end_page 157887
container_issue
container_start_page 157872
container_title IEEE access
container_volume 12
creator Hadi, Danang Kumara
Song, Zequn
Rahmadya, Budi
Kozume, Shogo
Sumiya, Tomonori
Sun, Ran
Takeda, Shigeki
Wang, Xiaoyan
description Achieving efficient warehouse operations for product management in an indoor environment has recently become a challenging issue. If a user can store a product in a vacant place and then roughly localize the product with a simple system, this localization system will enable efficient and flexible area usage in a warehouse. Complex radio wave propagation phenomena also make indoor localization more challenging. This paper introduces a radio frequency identification (RFID) system to localize products in indoor environments, including warehouses and cold storage. This approach uses distributed directional reference RFID tags in the areas as product location beacons, enabling received signal strength indicator (RSSI) measurements reflecting information on distances and directions for determining product coordinates. A user with a handheld reader stands in the close vicinity of the product. Then, the user reads the surrounding reference RFID tags for collecting the RSSI data. The use of machine learning (ML) addresses unstable user behaviors and unexpected acquired RSSI variations due to wireless propagation. Regression and classification algorithms in ML estimate product locations. The experimental demonstrations in actual indoor environments validate the proposed localization method. The experimental environments measure 24 \,m \times 12 \,m in a conference room and 9 \,m \times 12 \,m in a laboratory room. Experimental results show that this approach can provide localization accuracy of less than 2 meters, with wide application potential in inventory management and product tracking in various indoor environments, including factories, warehouses, and cold storage.
doi_str_mv 10.1109/ACCESS.2024.3486792
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_404c577f60c24119b4e7fcf5b6005cb4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10736579</ieee_id><doaj_id>oai_doaj_org_article_404c577f60c24119b4e7fcf5b6005cb4</doaj_id><sourcerecordid>3123122170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-93974c764a891dfebf215221cc776201577a4411c57f0a05e3e7d4f2c7c6fc3f3</originalsourceid><addsrcrecordid>eNpNkU1P4zAQhqMVSIuAX8AeLO05xd9ujlUp20hFKzX0bLnOuLgKMdjpAW77z3EIWmFZ8nhmnnc0eovihuAZIbi6XSyXq6aZUUz5jPG5VBX9UVxQIquSCSbPvsU_i-uUjjifeU4JdVH8q_s2hIgWEQxapcE_m8GHHjVvaYBntEu-P6Bt09TlA5h0iuN3bfr2CboWbcG0ENFu8J1_Hyt3PoIdedPlooMIvQW0va_v0KM5JJRB9GDsk-8BbcDEPkNXxbkzXYLrr_ey2N2vHpfrcvP3T71cbEpLOR_KilWKWyW5mVekdbB3lAhKibVKSYqJUMpwTogVymGDBTBQLXfUKiudZY5dFvWk2wZz1C8xbxrfdDBefyZCPGgTB2870BzzLKOcxHk2IdWeg3LWib3EWNg9z1q_J62XGF5PkAZ9DKeYt06aEZovJQrnLjZ12RhSiuD-TyVYj9bpyTo9Wqe_rMvUr4nyAPCNUEwKVbEPFlCURw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123122170</pqid></control><display><type>article</type><title>Indoor Area Estimation System Using RSSI-Measuring Handheld Reader Utilizing Directional Reference RFID Tags and Machine Learning</title><source>IEEE Xplore Open Access Journals</source><creator>Hadi, Danang Kumara ; Song, Zequn ; Rahmadya, Budi ; Kozume, Shogo ; Sumiya, Tomonori ; Sun, Ran ; Takeda, Shigeki ; Wang, Xiaoyan</creator><creatorcontrib>Hadi, Danang Kumara ; Song, Zequn ; Rahmadya, Budi ; Kozume, Shogo ; Sumiya, Tomonori ; Sun, Ran ; Takeda, Shigeki ; Wang, Xiaoyan</creatorcontrib><description><![CDATA[Achieving efficient warehouse operations for product management in an indoor environment has recently become a challenging issue. If a user can store a product in a vacant place and then roughly localize the product with a simple system, this localization system will enable efficient and flexible area usage in a warehouse. Complex radio wave propagation phenomena also make indoor localization more challenging. This paper introduces a radio frequency identification (RFID) system to localize products in indoor environments, including warehouses and cold storage. This approach uses distributed directional reference RFID tags in the areas as product location beacons, enabling received signal strength indicator (RSSI) measurements reflecting information on distances and directions for determining product coordinates. A user with a handheld reader stands in the close vicinity of the product. Then, the user reads the surrounding reference RFID tags for collecting the RSSI data. The use of machine learning (ML) addresses unstable user behaviors and unexpected acquired RSSI variations due to wireless propagation. Regression and classification algorithms in ML estimate product locations. The experimental demonstrations in actual indoor environments validate the proposed localization method. The experimental environments measure <inline-formula> <tex-math notation="LaTeX">24 \,m \times 12 \,m </tex-math></inline-formula> in a conference room and <inline-formula> <tex-math notation="LaTeX">9 \,m \times 12 \,m </tex-math></inline-formula> in a laboratory room. Experimental results show that this approach can provide localization accuracy of less than 2 meters, with wide application potential in inventory management and product tracking in various indoor environments, including factories, warehouses, and cold storage.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3486792</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Antenna radiation patterns ; Cold storage ; Data acquisition ; Global Positioning System ; Handheld reader ; indoor area ; Indoor environment ; Indoor environments ; Inventory management ; Localization ; Localization method ; Location awareness ; Machine learning ; Measuring instruments ; Radio frequency identification ; Radio waves ; Received signal strength indicator ; Reflector antennas ; RFID tags ; RSSI ; Signal strength ; Supply chains ; Tags ; Warehouses ; Wave propagation</subject><ispartof>IEEE access, 2024, Vol.12, p.157872-157887</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-93974c764a891dfebf215221cc776201577a4411c57f0a05e3e7d4f2c7c6fc3f3</cites><orcidid>0009-0005-0823-2759 ; 0000-0003-1240-4953 ; 0000-0003-4649-7051 ; 0000-0002-4404-3817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10736579$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Hadi, Danang Kumara</creatorcontrib><creatorcontrib>Song, Zequn</creatorcontrib><creatorcontrib>Rahmadya, Budi</creatorcontrib><creatorcontrib>Kozume, Shogo</creatorcontrib><creatorcontrib>Sumiya, Tomonori</creatorcontrib><creatorcontrib>Sun, Ran</creatorcontrib><creatorcontrib>Takeda, Shigeki</creatorcontrib><creatorcontrib>Wang, Xiaoyan</creatorcontrib><title>Indoor Area Estimation System Using RSSI-Measuring Handheld Reader Utilizing Directional Reference RFID Tags and Machine Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Achieving efficient warehouse operations for product management in an indoor environment has recently become a challenging issue. If a user can store a product in a vacant place and then roughly localize the product with a simple system, this localization system will enable efficient and flexible area usage in a warehouse. Complex radio wave propagation phenomena also make indoor localization more challenging. This paper introduces a radio frequency identification (RFID) system to localize products in indoor environments, including warehouses and cold storage. This approach uses distributed directional reference RFID tags in the areas as product location beacons, enabling received signal strength indicator (RSSI) measurements reflecting information on distances and directions for determining product coordinates. A user with a handheld reader stands in the close vicinity of the product. Then, the user reads the surrounding reference RFID tags for collecting the RSSI data. The use of machine learning (ML) addresses unstable user behaviors and unexpected acquired RSSI variations due to wireless propagation. Regression and classification algorithms in ML estimate product locations. The experimental demonstrations in actual indoor environments validate the proposed localization method. The experimental environments measure <inline-formula> <tex-math notation="LaTeX">24 \,m \times 12 \,m </tex-math></inline-formula> in a conference room and <inline-formula> <tex-math notation="LaTeX">9 \,m \times 12 \,m </tex-math></inline-formula> in a laboratory room. Experimental results show that this approach can provide localization accuracy of less than 2 meters, with wide application potential in inventory management and product tracking in various indoor environments, including factories, warehouses, and cold storage.]]></description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Antenna radiation patterns</subject><subject>Cold storage</subject><subject>Data acquisition</subject><subject>Global Positioning System</subject><subject>Handheld reader</subject><subject>indoor area</subject><subject>Indoor environment</subject><subject>Indoor environments</subject><subject>Inventory management</subject><subject>Localization</subject><subject>Localization method</subject><subject>Location awareness</subject><subject>Machine learning</subject><subject>Measuring instruments</subject><subject>Radio frequency identification</subject><subject>Radio waves</subject><subject>Received signal strength indicator</subject><subject>Reflector antennas</subject><subject>RFID tags</subject><subject>RSSI</subject><subject>Signal strength</subject><subject>Supply chains</subject><subject>Tags</subject><subject>Warehouses</subject><subject>Wave propagation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1P4zAQhqMVSIuAX8AeLO05xd9ujlUp20hFKzX0bLnOuLgKMdjpAW77z3EIWmFZ8nhmnnc0eovihuAZIbi6XSyXq6aZUUz5jPG5VBX9UVxQIquSCSbPvsU_i-uUjjifeU4JdVH8q_s2hIgWEQxapcE_m8GHHjVvaYBntEu-P6Bt09TlA5h0iuN3bfr2CboWbcG0ENFu8J1_Hyt3PoIdedPlooMIvQW0va_v0KM5JJRB9GDsk-8BbcDEPkNXxbkzXYLrr_ey2N2vHpfrcvP3T71cbEpLOR_KilWKWyW5mVekdbB3lAhKibVKSYqJUMpwTogVymGDBTBQLXfUKiudZY5dFvWk2wZz1C8xbxrfdDBefyZCPGgTB2870BzzLKOcxHk2IdWeg3LWib3EWNg9z1q_J62XGF5PkAZ9DKeYt06aEZovJQrnLjZ12RhSiuD-TyVYj9bpyTo9Wqe_rMvUr4nyAPCNUEwKVbEPFlCURw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Hadi, Danang Kumara</creator><creator>Song, Zequn</creator><creator>Rahmadya, Budi</creator><creator>Kozume, Shogo</creator><creator>Sumiya, Tomonori</creator><creator>Sun, Ran</creator><creator>Takeda, Shigeki</creator><creator>Wang, Xiaoyan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0005-0823-2759</orcidid><orcidid>https://orcid.org/0000-0003-1240-4953</orcidid><orcidid>https://orcid.org/0000-0003-4649-7051</orcidid><orcidid>https://orcid.org/0000-0002-4404-3817</orcidid></search><sort><creationdate>2024</creationdate><title>Indoor Area Estimation System Using RSSI-Measuring Handheld Reader Utilizing Directional Reference RFID Tags and Machine Learning</title><author>Hadi, Danang Kumara ; Song, Zequn ; Rahmadya, Budi ; Kozume, Shogo ; Sumiya, Tomonori ; Sun, Ran ; Takeda, Shigeki ; Wang, Xiaoyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-93974c764a891dfebf215221cc776201577a4411c57f0a05e3e7d4f2c7c6fc3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Antenna radiation patterns</topic><topic>Cold storage</topic><topic>Data acquisition</topic><topic>Global Positioning System</topic><topic>Handheld reader</topic><topic>indoor area</topic><topic>Indoor environment</topic><topic>Indoor environments</topic><topic>Inventory management</topic><topic>Localization</topic><topic>Localization method</topic><topic>Location awareness</topic><topic>Machine learning</topic><topic>Measuring instruments</topic><topic>Radio frequency identification</topic><topic>Radio waves</topic><topic>Received signal strength indicator</topic><topic>Reflector antennas</topic><topic>RFID tags</topic><topic>RSSI</topic><topic>Signal strength</topic><topic>Supply chains</topic><topic>Tags</topic><topic>Warehouses</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadi, Danang Kumara</creatorcontrib><creatorcontrib>Song, Zequn</creatorcontrib><creatorcontrib>Rahmadya, Budi</creatorcontrib><creatorcontrib>Kozume, Shogo</creatorcontrib><creatorcontrib>Sumiya, Tomonori</creatorcontrib><creatorcontrib>Sun, Ran</creatorcontrib><creatorcontrib>Takeda, Shigeki</creatorcontrib><creatorcontrib>Wang, Xiaoyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadi, Danang Kumara</au><au>Song, Zequn</au><au>Rahmadya, Budi</au><au>Kozume, Shogo</au><au>Sumiya, Tomonori</au><au>Sun, Ran</au><au>Takeda, Shigeki</au><au>Wang, Xiaoyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indoor Area Estimation System Using RSSI-Measuring Handheld Reader Utilizing Directional Reference RFID Tags and Machine Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>157872</spage><epage>157887</epage><pages>157872-157887</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Achieving efficient warehouse operations for product management in an indoor environment has recently become a challenging issue. If a user can store a product in a vacant place and then roughly localize the product with a simple system, this localization system will enable efficient and flexible area usage in a warehouse. Complex radio wave propagation phenomena also make indoor localization more challenging. This paper introduces a radio frequency identification (RFID) system to localize products in indoor environments, including warehouses and cold storage. This approach uses distributed directional reference RFID tags in the areas as product location beacons, enabling received signal strength indicator (RSSI) measurements reflecting information on distances and directions for determining product coordinates. A user with a handheld reader stands in the close vicinity of the product. Then, the user reads the surrounding reference RFID tags for collecting the RSSI data. The use of machine learning (ML) addresses unstable user behaviors and unexpected acquired RSSI variations due to wireless propagation. Regression and classification algorithms in ML estimate product locations. The experimental demonstrations in actual indoor environments validate the proposed localization method. The experimental environments measure <inline-formula> <tex-math notation="LaTeX">24 \,m \times 12 \,m </tex-math></inline-formula> in a conference room and <inline-formula> <tex-math notation="LaTeX">9 \,m \times 12 \,m </tex-math></inline-formula> in a laboratory room. Experimental results show that this approach can provide localization accuracy of less than 2 meters, with wide application potential in inventory management and product tracking in various indoor environments, including factories, warehouses, and cold storage.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3486792</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0005-0823-2759</orcidid><orcidid>https://orcid.org/0000-0003-1240-4953</orcidid><orcidid>https://orcid.org/0000-0003-4649-7051</orcidid><orcidid>https://orcid.org/0000-0002-4404-3817</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.157872-157887
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_404c577f60c24119b4e7fcf5b6005cb4
source IEEE Xplore Open Access Journals
subjects Accuracy
Algorithms
Antenna radiation patterns
Cold storage
Data acquisition
Global Positioning System
Handheld reader
indoor area
Indoor environment
Indoor environments
Inventory management
Localization
Localization method
Location awareness
Machine learning
Measuring instruments
Radio frequency identification
Radio waves
Received signal strength indicator
Reflector antennas
RFID tags
RSSI
Signal strength
Supply chains
Tags
Warehouses
Wave propagation
title Indoor Area Estimation System Using RSSI-Measuring Handheld Reader Utilizing Directional Reference RFID Tags and Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indoor%20Area%20Estimation%20System%20Using%20RSSI-Measuring%20Handheld%20Reader%20Utilizing%20Directional%20Reference%20RFID%20Tags%20and%20Machine%20Learning&rft.jtitle=IEEE%20access&rft.au=Hadi,%20Danang%20Kumara&rft.date=2024&rft.volume=12&rft.spage=157872&rft.epage=157887&rft.pages=157872-157887&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3486792&rft_dat=%3Cproquest_doaj_%3E3123122170%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-93974c764a891dfebf215221cc776201577a4411c57f0a05e3e7d4f2c7c6fc3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123122170&rft_id=info:pmid/&rft_ieee_id=10736579&rfr_iscdi=true