Loading…

wGrapeUNIPD-DL: An open dataset for white grape bunch detection

National and international Vitis variety catalogues can be used as image datasets for computer vision in viticulture. These databases archive ampelographic features and phenology of several grape varieties and plant structures images (e.g. leaf, bunch, shoots). Although these archives represent a po...

Full description

Saved in:
Bibliographic Details
Published in:Data in brief 2022-08, Vol.43, p.108466-108466, Article 108466
Main Authors: Sozzi, Marco, Cantalamessa, Silvia, Cogato, Alessia, Kayad, Ahmed, Marinello, Francesco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:National and international Vitis variety catalogues can be used as image datasets for computer vision in viticulture. These databases archive ampelographic features and phenology of several grape varieties and plant structures images (e.g. leaf, bunch, shoots). Although these archives represent a potential database for computer vision in viticulture, plant structure images are acquired singularly and mostly not directly in the vineyard. Localization computer vision models would take advantage of multiple objects in the same image, allowing more efficient training. The present images and labels dataset was designed to overcome such limitations and provide suitable images for multiple cluster identification in white grape varieties. A group of 373 images were acquired from later view in vertical shoot position vineyards in six different Italian locations at different phenological stages. Images were then labelled in YOLO labelling format. The dataset was made available both in terms of images and labels. The real number of bunches counted in the field, and the number of bunches visible in the image (not covered by other vine structures) was recorded for a group of images in this dataset.
ISSN:2352-3409
2352-3409
DOI:10.1016/j.dib.2022.108466