Loading…
The Role of PPARs in Lung Fibrosis
Pulmonary fibrosis is a group of disorders characterized by accumulation of scar tissue in the lung interstitium, resulting in loss of alveolar function, destruction of normal lung architecture, and respiratory distress. Some types of fibrosis respond to corticosteroids, but for many there are no ef...
Saved in:
Published in: | PPAR Research 2007-01, Vol.2007, p.242-251 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pulmonary fibrosis is a group of disorders characterized by accumulation of scar tissue in the lung interstitium, resulting in loss of alveolar function, destruction of normal lung architecture, and respiratory distress. Some types of fibrosis respond to corticosteroids, but for many there are no effective treatments. Prognosis varies but can be poor. For example, patients with idiopathic pulmonary fibrosis (IPF) have a median survival of only 2.9 years. Prognosis may be better in patients with some other types of pulmonary fibrosis, and there is variability in survival even among individuals with biopsy-proven IPF. Evidence is accumulating that the peroxisome proliferator-activated receptors (PPARs) play important roles in regulating processes related to fibrogenesis, including cellular differentiation, inflammation, and wound healing. PPARalpha agonists, including the hypolidipemic fibrate drugs, inhibit the production of collagen by hepatic stellate cells and inhibit liver, kidney, and cardiac fibrosis in animal models. In the mouse model of lung fibrosis induced by bleomycin, a PPARalpha agonist significantly inhibited the fibrotic response, while PPARalpha knockout mice developed more serious fibrosis. PPARbeta/delta appears to play a critical role in regulating the transition from inflammation to wound healing. PPARbeta/delta agonists inhibit lung fibroblast proliferation and enhance the antifibrotic properties of PPARgamma agonists. PPARgamma ligands oppose the profibrotic effect of TGF-beta, which induces differentiation of fibroblasts to myofibroblasts, a critical effector cell in fibrosis. PPARgamma ligands, including the thiazolidinedione class of antidiabetic drugs, effectively inhibit lung fibrosis in vitro and in animal models. The clinical availability of potent and selective PPARalpha and PPARgamma agonists should facilitate rapid development of successful treatment strategies based on current and ongoing research. |
---|---|
ISSN: | 1687-4757 1687-4765 |
DOI: | 10.1155/2007/71323 |