Loading…
Theoretical Investigation into the Ripple Source of External Gear Pumps
External gear pumps are among the most popular fluid power positive displacement pumps, however they often suffer of excessive flow pulsation transmitted to the downstream circuit. To meet the increasing demand of quiet operation for modern fluid power system, a better understanding of the ripple so...
Saved in:
Published in: | Energies (Basel) 2019-02, Vol.12 (3), p.535 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | External gear pumps are among the most popular fluid power positive displacement pumps, however they often suffer of excessive flow pulsation transmitted to the downstream circuit. To meet the increasing demand of quiet operation for modern fluid power system, a better understanding of the ripple source of gear pumps is desirable. This paper presents a novel approach for the analysis of the ripple source of gear pumps based on decomposition into a kinematic component and a pressurization component. The pump ripple can be regarded as the superposition of the displacement solution and the pressurization solution. The displacement solution is driven by the kinematic flow, and it can be derived from the kinematic flow theory; instead, the pressurization solution can be approximated by overlapping the pressurization flow for a single displacement chamber. Furthermore, in this way the changes of these two components with modification of the delivery circuit are determined in both analytical and numerical ways. The result of this analysis provides a good interpretation of the pulsation simulated by a detailed lumped-parameter simulation model, thus showing its validity. The result also indicates that the response of two ripple sources to the change of the loading in the downstream hydraulic circuit is very different. These findings reveal the limitation of the traditional experimental method for determining the pump ripple, that new experimental methods which are more physics-based can be potentially formulated based on this work. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en12030535 |