Loading…
Fast-Response Micro-Phototransistor Based on MoS2/Organic Molecule Heterojunction
Over the past years, molybdenum disulfide (MoS2) has been the most extensively studied two-dimensional (2D) semiconductormaterial. With unique electrical and optical properties, 2DMoS2 is considered to be a promising candidate for future nanoscale electronic and optoelectronic devices. However, char...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2023-04, Vol.13 (9), p.1491 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-ad8a67cdac29aa4df9cdd24bbd76576a4517a71be01a77f1dea4697190760e203 |
---|---|
cites | cdi_FETCH-LOGICAL-c456t-ad8a67cdac29aa4df9cdd24bbd76576a4517a71be01a77f1dea4697190760e203 |
container_end_page | |
container_issue | 9 |
container_start_page | 1491 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 13 |
creator | Andleeb, Shaista Wang, Xiaoyu Dong, Haiyun Valligatla, Sreeramulu Saggau, Christian Niclaas Ma, Libo Schmidt, Oliver G. Zhu, Feng |
description | Over the past years, molybdenum disulfide (MoS2) has been the most extensively studied two-dimensional (2D) semiconductormaterial. With unique electrical and optical properties, 2DMoS2 is considered to be a promising candidate for future nanoscale electronic and optoelectronic devices. However, charge trapping leads to a persistent photoconductance (PPC), hindering its use for optoelectronic applications. To overcome these drawbacks and improve the optoelectronic performance, organic semiconductors (OSCs) are selected to passivate surface defects, tune the optical characteristics, and modify the doping polarity of 2D MoS2. Here, we demonstrate a fast photoresponse in multilayer (ML) MoS2 by addressing a heterojunction interface with vanadylphthalocyanine (VOPc) molecules. The MoS2/VOPc van der Waals interaction that has been established encourages the PPC effect in MoS2 by rapidly segregating photo-generated holes, which move away from the traps of MoS2 toward the VOPc molecules. The MoS2/VOPc phototransistor exhibits a fast photo response of less than 15 ms for decay and rise, which is enhanced by 3ordersof magnitude in comparison to that of a pristine MoS2-based phototransistor (seconds to tens of seconds). This work offers a means to realize high-performance transition metal dichalcogenide (TMD)-based photodetection with a fast response speed. |
doi_str_mv | 10.3390/nano13091491 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_40805af20c5c414598e4e2e7191b3a56</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_40805af20c5c414598e4e2e7191b3a56</doaj_id><sourcerecordid>2812509473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-ad8a67cdac29aa4df9cdd24bbd76576a4517a71be01a77f1dea4697190760e203</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhiMEolXpjR8QiQsHQj3-iOMTgorSSq1KC5ytiT3ZZpW1FztB6r-vl61Qiy9jz7x6PDNvVb0F9lEIw04ChgiCGZAGXlSHnGnTSGPg5ZP7QXWc85qVY0B0SryuDoQGrZloD6ubM8xzc0t5G0Om-mp0KTbf7-Ic54Qhj3mOqf6CmXwdQ30Vf_CT67TCMLrymMgtE9XnNFOK6yW4eYzhTfVqwCnT8WM8qn6dff15et5cXn-7OP182Tip2rlB32GrnUfHDaL0g3Hec9n3XrdKtygVaNTQEwPUegBPKFujwTDdMuJMHFUXe66PuLbbNG4w3duIo_2biGllMc2jm8hK1jGFA2dOOQlSmY4kcSow6AWqtrA-7Vnbpd-QdxTK9NMz6PNKGO_sKv6xwKBjALwQ3j8SUvy9UJ7tZsyOpgkDxSVb3oFQqpNm99m7_6TruKRQdrVTccWM1KKoPuxVxZCcEw3_ugFmd97bp96LBwxioA4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812509473</pqid></control><display><type>article</type><title>Fast-Response Micro-Phototransistor Based on MoS2/Organic Molecule Heterojunction</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Andleeb, Shaista ; Wang, Xiaoyu ; Dong, Haiyun ; Valligatla, Sreeramulu ; Saggau, Christian Niclaas ; Ma, Libo ; Schmidt, Oliver G. ; Zhu, Feng</creator><creatorcontrib>Andleeb, Shaista ; Wang, Xiaoyu ; Dong, Haiyun ; Valligatla, Sreeramulu ; Saggau, Christian Niclaas ; Ma, Libo ; Schmidt, Oliver G. ; Zhu, Feng</creatorcontrib><description>Over the past years, molybdenum disulfide (MoS2) has been the most extensively studied two-dimensional (2D) semiconductormaterial. With unique electrical and optical properties, 2DMoS2 is considered to be a promising candidate for future nanoscale electronic and optoelectronic devices. However, charge trapping leads to a persistent photoconductance (PPC), hindering its use for optoelectronic applications. To overcome these drawbacks and improve the optoelectronic performance, organic semiconductors (OSCs) are selected to passivate surface defects, tune the optical characteristics, and modify the doping polarity of 2D MoS2. Here, we demonstrate a fast photoresponse in multilayer (ML) MoS2 by addressing a heterojunction interface with vanadylphthalocyanine (VOPc) molecules. The MoS2/VOPc van der Waals interaction that has been established encourages the PPC effect in MoS2 by rapidly segregating photo-generated holes, which move away from the traps of MoS2 toward the VOPc molecules. The MoS2/VOPc phototransistor exhibits a fast photo response of less than 15 ms for decay and rise, which is enhanced by 3ordersof magnitude in comparison to that of a pristine MoS2-based phototransistor (seconds to tens of seconds). This work offers a means to realize high-performance transition metal dichalcogenide (TMD)-based photodetection with a fast response speed.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano13091491</identifier><identifier>PMID: 37177036</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Electric fields ; Energy ; Heterojunctions ; heterostructure ; Interfaces ; Lasers ; Molybdenum ; Molybdenum disulfide ; Morphology ; MoS2 ; Multilayers ; Optical properties ; Optoelectronic devices ; Organic chemistry ; organic molecule ; Organic semiconductors ; Photoresponse ; phototransistor ; Spectrum analysis ; Surface defects ; Transition metal compounds ; transition metal dichalcogenides ; VOPc</subject><ispartof>Nanomaterials (Basel, Switzerland), 2023-04, Vol.13 (9), p.1491</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-ad8a67cdac29aa4df9cdd24bbd76576a4517a71be01a77f1dea4697190760e203</citedby><cites>FETCH-LOGICAL-c456t-ad8a67cdac29aa4df9cdd24bbd76576a4517a71be01a77f1dea4697190760e203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2812509473/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2812509473?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids></links><search><creatorcontrib>Andleeb, Shaista</creatorcontrib><creatorcontrib>Wang, Xiaoyu</creatorcontrib><creatorcontrib>Dong, Haiyun</creatorcontrib><creatorcontrib>Valligatla, Sreeramulu</creatorcontrib><creatorcontrib>Saggau, Christian Niclaas</creatorcontrib><creatorcontrib>Ma, Libo</creatorcontrib><creatorcontrib>Schmidt, Oliver G.</creatorcontrib><creatorcontrib>Zhu, Feng</creatorcontrib><title>Fast-Response Micro-Phototransistor Based on MoS2/Organic Molecule Heterojunction</title><title>Nanomaterials (Basel, Switzerland)</title><description>Over the past years, molybdenum disulfide (MoS2) has been the most extensively studied two-dimensional (2D) semiconductormaterial. With unique electrical and optical properties, 2DMoS2 is considered to be a promising candidate for future nanoscale electronic and optoelectronic devices. However, charge trapping leads to a persistent photoconductance (PPC), hindering its use for optoelectronic applications. To overcome these drawbacks and improve the optoelectronic performance, organic semiconductors (OSCs) are selected to passivate surface defects, tune the optical characteristics, and modify the doping polarity of 2D MoS2. Here, we demonstrate a fast photoresponse in multilayer (ML) MoS2 by addressing a heterojunction interface with vanadylphthalocyanine (VOPc) molecules. The MoS2/VOPc van der Waals interaction that has been established encourages the PPC effect in MoS2 by rapidly segregating photo-generated holes, which move away from the traps of MoS2 toward the VOPc molecules. The MoS2/VOPc phototransistor exhibits a fast photo response of less than 15 ms for decay and rise, which is enhanced by 3ordersof magnitude in comparison to that of a pristine MoS2-based phototransistor (seconds to tens of seconds). This work offers a means to realize high-performance transition metal dichalcogenide (TMD)-based photodetection with a fast response speed.</description><subject>Electric fields</subject><subject>Energy</subject><subject>Heterojunctions</subject><subject>heterostructure</subject><subject>Interfaces</subject><subject>Lasers</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>Morphology</subject><subject>MoS2</subject><subject>Multilayers</subject><subject>Optical properties</subject><subject>Optoelectronic devices</subject><subject>Organic chemistry</subject><subject>organic molecule</subject><subject>Organic semiconductors</subject><subject>Photoresponse</subject><subject>phototransistor</subject><subject>Spectrum analysis</subject><subject>Surface defects</subject><subject>Transition metal compounds</subject><subject>transition metal dichalcogenides</subject><subject>VOPc</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1v1DAQhiMEolXpjR8QiQsHQj3-iOMTgorSSq1KC5ytiT3ZZpW1FztB6r-vl61Qiy9jz7x6PDNvVb0F9lEIw04ChgiCGZAGXlSHnGnTSGPg5ZP7QXWc85qVY0B0SryuDoQGrZloD6ubM8xzc0t5G0Om-mp0KTbf7-Ic54Qhj3mOqf6CmXwdQ30Vf_CT67TCMLrymMgtE9XnNFOK6yW4eYzhTfVqwCnT8WM8qn6dff15et5cXn-7OP182Tip2rlB32GrnUfHDaL0g3Hec9n3XrdKtygVaNTQEwPUegBPKFujwTDdMuJMHFUXe66PuLbbNG4w3duIo_2biGllMc2jm8hK1jGFA2dOOQlSmY4kcSow6AWqtrA-7Vnbpd-QdxTK9NMz6PNKGO_sKv6xwKBjALwQ3j8SUvy9UJ7tZsyOpgkDxSVb3oFQqpNm99m7_6TruKRQdrVTccWM1KKoPuxVxZCcEw3_ugFmd97bp96LBwxioA4</recordid><startdate>20230427</startdate><enddate>20230427</enddate><creator>Andleeb, Shaista</creator><creator>Wang, Xiaoyu</creator><creator>Dong, Haiyun</creator><creator>Valligatla, Sreeramulu</creator><creator>Saggau, Christian Niclaas</creator><creator>Ma, Libo</creator><creator>Schmidt, Oliver G.</creator><creator>Zhu, Feng</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230427</creationdate><title>Fast-Response Micro-Phototransistor Based on MoS2/Organic Molecule Heterojunction</title><author>Andleeb, Shaista ; Wang, Xiaoyu ; Dong, Haiyun ; Valligatla, Sreeramulu ; Saggau, Christian Niclaas ; Ma, Libo ; Schmidt, Oliver G. ; Zhu, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-ad8a67cdac29aa4df9cdd24bbd76576a4517a71be01a77f1dea4697190760e203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electric fields</topic><topic>Energy</topic><topic>Heterojunctions</topic><topic>heterostructure</topic><topic>Interfaces</topic><topic>Lasers</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>Morphology</topic><topic>MoS2</topic><topic>Multilayers</topic><topic>Optical properties</topic><topic>Optoelectronic devices</topic><topic>Organic chemistry</topic><topic>organic molecule</topic><topic>Organic semiconductors</topic><topic>Photoresponse</topic><topic>phototransistor</topic><topic>Spectrum analysis</topic><topic>Surface defects</topic><topic>Transition metal compounds</topic><topic>transition metal dichalcogenides</topic><topic>VOPc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andleeb, Shaista</creatorcontrib><creatorcontrib>Wang, Xiaoyu</creatorcontrib><creatorcontrib>Dong, Haiyun</creatorcontrib><creatorcontrib>Valligatla, Sreeramulu</creatorcontrib><creatorcontrib>Saggau, Christian Niclaas</creatorcontrib><creatorcontrib>Ma, Libo</creatorcontrib><creatorcontrib>Schmidt, Oliver G.</creatorcontrib><creatorcontrib>Zhu, Feng</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andleeb, Shaista</au><au>Wang, Xiaoyu</au><au>Dong, Haiyun</au><au>Valligatla, Sreeramulu</au><au>Saggau, Christian Niclaas</au><au>Ma, Libo</au><au>Schmidt, Oliver G.</au><au>Zhu, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast-Response Micro-Phototransistor Based on MoS2/Organic Molecule Heterojunction</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2023-04-27</date><risdate>2023</risdate><volume>13</volume><issue>9</issue><spage>1491</spage><pages>1491-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Over the past years, molybdenum disulfide (MoS2) has been the most extensively studied two-dimensional (2D) semiconductormaterial. With unique electrical and optical properties, 2DMoS2 is considered to be a promising candidate for future nanoscale electronic and optoelectronic devices. However, charge trapping leads to a persistent photoconductance (PPC), hindering its use for optoelectronic applications. To overcome these drawbacks and improve the optoelectronic performance, organic semiconductors (OSCs) are selected to passivate surface defects, tune the optical characteristics, and modify the doping polarity of 2D MoS2. Here, we demonstrate a fast photoresponse in multilayer (ML) MoS2 by addressing a heterojunction interface with vanadylphthalocyanine (VOPc) molecules. The MoS2/VOPc van der Waals interaction that has been established encourages the PPC effect in MoS2 by rapidly segregating photo-generated holes, which move away from the traps of MoS2 toward the VOPc molecules. The MoS2/VOPc phototransistor exhibits a fast photo response of less than 15 ms for decay and rise, which is enhanced by 3ordersof magnitude in comparison to that of a pristine MoS2-based phototransistor (seconds to tens of seconds). This work offers a means to realize high-performance transition metal dichalcogenide (TMD)-based photodetection with a fast response speed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37177036</pmid><doi>10.3390/nano13091491</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2023-04, Vol.13 (9), p.1491 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_40805af20c5c414598e4e2e7191b3a56 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Electric fields Energy Heterojunctions heterostructure Interfaces Lasers Molybdenum Molybdenum disulfide Morphology MoS2 Multilayers Optical properties Optoelectronic devices Organic chemistry organic molecule Organic semiconductors Photoresponse phototransistor Spectrum analysis Surface defects Transition metal compounds transition metal dichalcogenides VOPc |
title | Fast-Response Micro-Phototransistor Based on MoS2/Organic Molecule Heterojunction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast-Response%20Micro-Phototransistor%20Based%20on%20MoS2/Organic%20Molecule%20Heterojunction&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Andleeb,%20Shaista&rft.date=2023-04-27&rft.volume=13&rft.issue=9&rft.spage=1491&rft.pages=1491-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano13091491&rft_dat=%3Cproquest_doaj_%3E2812509473%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-ad8a67cdac29aa4df9cdd24bbd76576a4517a71be01a77f1dea4697190760e203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812509473&rft_id=info:pmid/37177036&rfr_iscdi=true |