Loading…
Exploring and machine learning structural instabilities in 2D materials
We address the problem of predicting the zero-temperature dynamical stability (DS) of a periodic crystal without computing its full phonon band structure. Here we report the evidence that DS can be inferred with good reliability from the phonon frequencies at the center and boundary of the Brillouin...
Saved in:
Published in: | npj computational materials 2023-03, Vol.9 (1), p.33-10, Article 33 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-1bf76fcaf74d7c1cd184d1ce8fb029e465bb9e99bdb418ee11dbde72da0341b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-1bf76fcaf74d7c1cd184d1ce8fb029e465bb9e99bdb418ee11dbde72da0341b83 |
container_end_page | 10 |
container_issue | 1 |
container_start_page | 33 |
container_title | npj computational materials |
container_volume | 9 |
creator | Manti, Simone Svendsen, Mark Kamper Knøsgaard, Nikolaj R. Lyngby, Peder M. Thygesen, Kristian S. |
description | We address the problem of predicting the zero-temperature dynamical stability (DS) of a periodic crystal without computing its full phonon band structure. Here we report the evidence that DS can be inferred with good reliability from the phonon frequencies at the center and boundary of the Brillouin zone (BZ). This analysis represents a validation of the DS test employed by the Computational 2D Materials Database (C2DB). For 137 dynamically unstable 2D crystals, we displace the atoms along an unstable mode and relax the structure. This procedure yields a dynamically stable crystal in 49 cases. The elementary properties of these new structures are characterized using the C2DB workflow, and it is found that their properties can differ significantly from those of the original unstable crystals, e.g., band gaps are opened by 0.3 eV on average. All the crystal structures and properties are available in the C2DB. Finally, we train a classification model on the DS data for 3295 2D materials in the C2DB using a representation encoding the electronic structure of the crystal. We obtain an excellent receiver operating characteristic (ROC) curve with an area under the curve (AUC) of 0.90, showing that the classification model can drastically reduce computational efforts in high-throughput studies. |
doi_str_mv | 10.1038/s41524-023-00977-x |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_40a35109f6e64893a5bd77821d4c37d5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_40a35109f6e64893a5bd77821d4c37d5</doaj_id><sourcerecordid>2782557985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-1bf76fcaf74d7c1cd184d1ce8fb029e465bb9e99bdb418ee11dbde72da0341b83</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKsB16N5TpKl1KqFghtdh7ympkxnxmQK9d-b6Yi6cnUfnHPu5QPgGsFbBIm4SxQxTEuISQmh5Lw8noEZhoyXRFbw_E9_CRYp7SCESGKBKZyBp9Wxb7oY2m2hW1fstX0PrS8ar2M7LtMQD3Y4RN0UoU2DNqEJQ_ApTwV-yPrBx6CbdAUu6lz84rvOwdvj6nX5XG5entbL-01pKZZDiUzNq9rqmlPHLbIOCeqQ9aI2EEtPK2aM9FIaZygS3iPkjPMcOw0JRUaQOVhPua7TO9XHsNfxU3U6qNOii1ul4xBs4xWFmjAEZV35igpJNDOOc4GRo5Zwx3LWzZTVx-7j4NOgdt0htvl9hbOOMS7FqMKTysYupejrn6sIqpG_mvirzF-d-KtjNpHJlPqRrY-_0f-4vgAXBYjl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2782557985</pqid></control><display><type>article</type><title>Exploring and machine learning structural instabilities in 2D materials</title><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Manti, Simone ; Svendsen, Mark Kamper ; Knøsgaard, Nikolaj R. ; Lyngby, Peder M. ; Thygesen, Kristian S.</creator><creatorcontrib>Manti, Simone ; Svendsen, Mark Kamper ; Knøsgaard, Nikolaj R. ; Lyngby, Peder M. ; Thygesen, Kristian S.</creatorcontrib><description>We address the problem of predicting the zero-temperature dynamical stability (DS) of a periodic crystal without computing its full phonon band structure. Here we report the evidence that DS can be inferred with good reliability from the phonon frequencies at the center and boundary of the Brillouin zone (BZ). This analysis represents a validation of the DS test employed by the Computational 2D Materials Database (C2DB). For 137 dynamically unstable 2D crystals, we displace the atoms along an unstable mode and relax the structure. This procedure yields a dynamically stable crystal in 49 cases. The elementary properties of these new structures are characterized using the C2DB workflow, and it is found that their properties can differ significantly from those of the original unstable crystals, e.g., band gaps are opened by 0.3 eV on average. All the crystal structures and properties are available in the C2DB. Finally, we train a classification model on the DS data for 3295 2D materials in the C2DB using a representation encoding the electronic structure of the crystal. We obtain an excellent receiver operating characteristic (ROC) curve with an area under the curve (AUC) of 0.90, showing that the classification model can drastically reduce computational efforts in high-throughput studies.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-023-00977-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1000/1018 ; 639/766/119/995 ; Brillouin zones ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classification ; Computational Intelligence ; Computer applications ; Crystal structure ; Crystals ; Dynamic stability ; Eigenvalues ; Electronic structure ; Machine learning ; Materials Science ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Phase transitions ; Phonons ; Physics ; Structural stability ; Symmetry ; Theoretical ; Two dimensional materials ; Workflow</subject><ispartof>npj computational materials, 2023-03, Vol.9 (1), p.33-10, Article 33</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-1bf76fcaf74d7c1cd184d1ce8fb029e465bb9e99bdb418ee11dbde72da0341b83</citedby><cites>FETCH-LOGICAL-c429t-1bf76fcaf74d7c1cd184d1ce8fb029e465bb9e99bdb418ee11dbde72da0341b83</cites><orcidid>0000-0001-9718-849X ; 0000-0001-7498-6958 ; 0000-0003-3770-0863 ; 0000-0001-5197-214X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2782557985/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2782557985?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Manti, Simone</creatorcontrib><creatorcontrib>Svendsen, Mark Kamper</creatorcontrib><creatorcontrib>Knøsgaard, Nikolaj R.</creatorcontrib><creatorcontrib>Lyngby, Peder M.</creatorcontrib><creatorcontrib>Thygesen, Kristian S.</creatorcontrib><title>Exploring and machine learning structural instabilities in 2D materials</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>We address the problem of predicting the zero-temperature dynamical stability (DS) of a periodic crystal without computing its full phonon band structure. Here we report the evidence that DS can be inferred with good reliability from the phonon frequencies at the center and boundary of the Brillouin zone (BZ). This analysis represents a validation of the DS test employed by the Computational 2D Materials Database (C2DB). For 137 dynamically unstable 2D crystals, we displace the atoms along an unstable mode and relax the structure. This procedure yields a dynamically stable crystal in 49 cases. The elementary properties of these new structures are characterized using the C2DB workflow, and it is found that their properties can differ significantly from those of the original unstable crystals, e.g., band gaps are opened by 0.3 eV on average. All the crystal structures and properties are available in the C2DB. Finally, we train a classification model on the DS data for 3295 2D materials in the C2DB using a representation encoding the electronic structure of the crystal. We obtain an excellent receiver operating characteristic (ROC) curve with an area under the curve (AUC) of 0.90, showing that the classification model can drastically reduce computational efforts in high-throughput studies.</description><subject>639/766/119/1000/1018</subject><subject>639/766/119/995</subject><subject>Brillouin zones</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classification</subject><subject>Computational Intelligence</subject><subject>Computer applications</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Dynamic stability</subject><subject>Eigenvalues</subject><subject>Electronic structure</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Phase transitions</subject><subject>Phonons</subject><subject>Physics</subject><subject>Structural stability</subject><subject>Symmetry</subject><subject>Theoretical</subject><subject>Two dimensional materials</subject><subject>Workflow</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kEtLAzEUhYMoWGr_gKsB16N5TpKl1KqFghtdh7ympkxnxmQK9d-b6Yi6cnUfnHPu5QPgGsFbBIm4SxQxTEuISQmh5Lw8noEZhoyXRFbw_E9_CRYp7SCESGKBKZyBp9Wxb7oY2m2hW1fstX0PrS8ar2M7LtMQD3Y4RN0UoU2DNqEJQ_ApTwV-yPrBx6CbdAUu6lz84rvOwdvj6nX5XG5entbL-01pKZZDiUzNq9rqmlPHLbIOCeqQ9aI2EEtPK2aM9FIaZygS3iPkjPMcOw0JRUaQOVhPua7TO9XHsNfxU3U6qNOii1ul4xBs4xWFmjAEZV35igpJNDOOc4GRo5Zwx3LWzZTVx-7j4NOgdt0htvl9hbOOMS7FqMKTysYupejrn6sIqpG_mvirzF-d-KtjNpHJlPqRrY-_0f-4vgAXBYjl</recordid><startdate>20230304</startdate><enddate>20230304</enddate><creator>Manti, Simone</creator><creator>Svendsen, Mark Kamper</creator><creator>Knøsgaard, Nikolaj R.</creator><creator>Lyngby, Peder M.</creator><creator>Thygesen, Kristian S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9718-849X</orcidid><orcidid>https://orcid.org/0000-0001-7498-6958</orcidid><orcidid>https://orcid.org/0000-0003-3770-0863</orcidid><orcidid>https://orcid.org/0000-0001-5197-214X</orcidid></search><sort><creationdate>20230304</creationdate><title>Exploring and machine learning structural instabilities in 2D materials</title><author>Manti, Simone ; Svendsen, Mark Kamper ; Knøsgaard, Nikolaj R. ; Lyngby, Peder M. ; Thygesen, Kristian S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-1bf76fcaf74d7c1cd184d1ce8fb029e465bb9e99bdb418ee11dbde72da0341b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/766/119/1000/1018</topic><topic>639/766/119/995</topic><topic>Brillouin zones</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classification</topic><topic>Computational Intelligence</topic><topic>Computer applications</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Dynamic stability</topic><topic>Eigenvalues</topic><topic>Electronic structure</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Phase transitions</topic><topic>Phonons</topic><topic>Physics</topic><topic>Structural stability</topic><topic>Symmetry</topic><topic>Theoretical</topic><topic>Two dimensional materials</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manti, Simone</creatorcontrib><creatorcontrib>Svendsen, Mark Kamper</creatorcontrib><creatorcontrib>Knøsgaard, Nikolaj R.</creatorcontrib><creatorcontrib>Lyngby, Peder M.</creatorcontrib><creatorcontrib>Thygesen, Kristian S.</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manti, Simone</au><au>Svendsen, Mark Kamper</au><au>Knøsgaard, Nikolaj R.</au><au>Lyngby, Peder M.</au><au>Thygesen, Kristian S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring and machine learning structural instabilities in 2D materials</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2023-03-04</date><risdate>2023</risdate><volume>9</volume><issue>1</issue><spage>33</spage><epage>10</epage><pages>33-10</pages><artnum>33</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>We address the problem of predicting the zero-temperature dynamical stability (DS) of a periodic crystal without computing its full phonon band structure. Here we report the evidence that DS can be inferred with good reliability from the phonon frequencies at the center and boundary of the Brillouin zone (BZ). This analysis represents a validation of the DS test employed by the Computational 2D Materials Database (C2DB). For 137 dynamically unstable 2D crystals, we displace the atoms along an unstable mode and relax the structure. This procedure yields a dynamically stable crystal in 49 cases. The elementary properties of these new structures are characterized using the C2DB workflow, and it is found that their properties can differ significantly from those of the original unstable crystals, e.g., band gaps are opened by 0.3 eV on average. All the crystal structures and properties are available in the C2DB. Finally, we train a classification model on the DS data for 3295 2D materials in the C2DB using a representation encoding the electronic structure of the crystal. We obtain an excellent receiver operating characteristic (ROC) curve with an area under the curve (AUC) of 0.90, showing that the classification model can drastically reduce computational efforts in high-throughput studies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-023-00977-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9718-849X</orcidid><orcidid>https://orcid.org/0000-0001-7498-6958</orcidid><orcidid>https://orcid.org/0000-0003-3770-0863</orcidid><orcidid>https://orcid.org/0000-0001-5197-214X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2057-3960 |
ispartof | npj computational materials, 2023-03, Vol.9 (1), p.33-10, Article 33 |
issn | 2057-3960 2057-3960 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_40a35109f6e64893a5bd77821d4c37d5 |
source | Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/766/119/1000/1018 639/766/119/995 Brillouin zones Characterization and Evaluation of Materials Chemistry and Materials Science Classification Computational Intelligence Computer applications Crystal structure Crystals Dynamic stability Eigenvalues Electronic structure Machine learning Materials Science Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Phase transitions Phonons Physics Structural stability Symmetry Theoretical Two dimensional materials Workflow |
title | Exploring and machine learning structural instabilities in 2D materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A51%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20and%20machine%20learning%20structural%20instabilities%20in%202D%20materials&rft.jtitle=npj%20computational%20materials&rft.au=Manti,%20Simone&rft.date=2023-03-04&rft.volume=9&rft.issue=1&rft.spage=33&rft.epage=10&rft.pages=33-10&rft.artnum=33&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-023-00977-x&rft_dat=%3Cproquest_doaj_%3E2782557985%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-1bf76fcaf74d7c1cd184d1ce8fb029e465bb9e99bdb418ee11dbde72da0341b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2782557985&rft_id=info:pmid/&rfr_iscdi=true |