Loading…
Event-Triggered Transmission of Sensor Measurements Using Twin Hybrid Filters for Renewable Energy Resource Management Systems
Recently, solar and wind power generation have gained attention as pathways to achieving carbon neutrality, and Renewable Energy Resource Management System (RERMS) technology has been developed to monitor and control small-scale, distributed renewable energy resources. In this work, we present an Ev...
Saved in:
Published in: | Energies (Basel) 2024-11, Vol.17 (22), p.5651 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, solar and wind power generation have gained attention as pathways to achieving carbon neutrality, and Renewable Energy Resource Management System (RERMS) technology has been developed to monitor and control small-scale, distributed renewable energy resources. In this work, we present an Event-Triggered Transmission (ETT) algorithm for RERMS, which transmits sensor measurements to the base station only when necessary. The ETT algorithm helps prevent congestion in the communication channel between RERMS and the base station, avoiding time delays or packet loss caused by the excessive transmission of sensor measurements. We design a hybrid state estimation algorithm that combines Kalman and Finite Impulse Response (FIR) filters to enhance the estimation performance, and we propose a new ETT algorithm based on this design. We evaluate the performance of the proposed algorithm through experiments that transmit actual sensor measurements from a photovoltaic power generation system to the base station, demonstrating that it outperforms existing algorithms. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en17225651 |