Loading…
Language models and psychological sciences
Large language models (LLMs) are demonstrating impressive performance on many reasoning and problem-solving tasks from cognitive psychology. When tested, their accuracy is often on par with average neurotypical adults, challenging long-standing critiques of associative models. Here we analyse recent...
Saved in:
Published in: | Frontiers in psychology 2023-10, Vol.14, p.1279317 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-99ca9e23cfd6ba534e5c4def4fdeeb20b677314b57df4739414b3b436575e143 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-99ca9e23cfd6ba534e5c4def4fdeeb20b677314b57df4739414b3b436575e143 |
container_end_page | |
container_issue | |
container_start_page | 1279317 |
container_title | Frontiers in psychology |
container_volume | 14 |
creator | Sartori, Giuseppe Orrù, Graziella |
description | Large language models (LLMs) are demonstrating impressive performance on many reasoning and problem-solving tasks from cognitive psychology. When tested, their accuracy is often on par with average neurotypical adults, challenging long-standing critiques of associative models. Here we analyse recent findings at the intersection of LLMs and cognitive science. Here we discuss how modern LLMs resurrect associationist principles, with abilities like long-distance associations enabling complex reasoning. While limitations remain in areas like causal cognition and planning, phenomena like emergence suggest room for growth. Providing examples and increasing the dimensions of the network are methods that further improve LLM abilities, mirroring facilitation effects in human cognition. Analysis of LLMs errors provides insight into human cognitive biases. Overall, we argue LLMs represent a promising development for cognitive modelling, enabling new explorations of the mechanisms underlying intelligence and reasoning from an associationist point of view. Carefully evaluating LLMs with the tools of cognitive psychology will further understand the building blocks of the human mind. |
doi_str_mv | 10.3389/fpsyg.2023.1279317 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_40af9c493e2a4e02a92de494f3268720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_40af9c493e2a4e02a92de494f3268720</doaj_id><sourcerecordid>2888033919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-99ca9e23cfd6ba534e5c4def4fdeeb20b677314b57df4739414b3b436575e143</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMoKuof8CA9irA1ycxuNicR8aNQ8OI9ZJPJurLd1E0r-O_dfljaXBImM8-88DB2LfgYoNT3YZ5-67HkEsZCKg1CHbFzURSYCa7K4733GbtK6YsPB7nkXJ6yM1AahcrFObub2q5e2ppGs-ipTSPb-dGAdp-xjXXjbDtKrqHOUbpkJ8G2ia629wX7eHn-eHrLpu-vk6fHaeaw0ItMa2c1SXDBF5XNASl36Clg8ESV5FWhFAiscuUDKhiCYAUVQpGrnATCBZtssD7aLzPvm5ntf020jVkXYl8b2y8a15JBboN2qIGkReLSaukJNQaQRakkH1gPG9Z8Wc3IO-oWvW0PoIc_XfNp6vhjBC-kHkgD4XZL6OP3ktLCzJrkqG1tR3GZjCzLkgNooYdWuWl1fUypp7DbI7hZOTNrZ2blzGydDUM3-wl3I_-G4A8cbJLq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888033919</pqid></control><display><type>article</type><title>Language models and psychological sciences</title><source>PubMed</source><creator>Sartori, Giuseppe ; Orrù, Graziella</creator><creatorcontrib>Sartori, Giuseppe ; Orrù, Graziella</creatorcontrib><description>Large language models (LLMs) are demonstrating impressive performance on many reasoning and problem-solving tasks from cognitive psychology. When tested, their accuracy is often on par with average neurotypical adults, challenging long-standing critiques of associative models. Here we analyse recent findings at the intersection of LLMs and cognitive science. Here we discuss how modern LLMs resurrect associationist principles, with abilities like long-distance associations enabling complex reasoning. While limitations remain in areas like causal cognition and planning, phenomena like emergence suggest room for growth. Providing examples and increasing the dimensions of the network are methods that further improve LLM abilities, mirroring facilitation effects in human cognition. Analysis of LLMs errors provides insight into human cognitive biases. Overall, we argue LLMs represent a promising development for cognitive modelling, enabling new explorations of the mechanisms underlying intelligence and reasoning from an associationist point of view. Carefully evaluating LLMs with the tools of cognitive psychology will further understand the building blocks of the human mind.</description><identifier>ISSN: 1664-1078</identifier><identifier>EISSN: 1664-1078</identifier><identifier>DOI: 10.3389/fpsyg.2023.1279317</identifier><identifier>PMID: 37941751</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>associationism ; cognitive psychology ; GPT-4 ; large language models (LLMs) ; Psychology ; reasoning</subject><ispartof>Frontiers in psychology, 2023-10, Vol.14, p.1279317</ispartof><rights>Copyright © 2023 Sartori and Orrù.</rights><rights>Copyright © 2023 Sartori and Orrù. 2023 Sartori and Orrù</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-99ca9e23cfd6ba534e5c4def4fdeeb20b677314b57df4739414b3b436575e143</citedby><cites>FETCH-LOGICAL-c469t-99ca9e23cfd6ba534e5c4def4fdeeb20b677314b57df4739414b3b436575e143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629494/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629494/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37941751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sartori, Giuseppe</creatorcontrib><creatorcontrib>Orrù, Graziella</creatorcontrib><title>Language models and psychological sciences</title><title>Frontiers in psychology</title><addtitle>Front Psychol</addtitle><description>Large language models (LLMs) are demonstrating impressive performance on many reasoning and problem-solving tasks from cognitive psychology. When tested, their accuracy is often on par with average neurotypical adults, challenging long-standing critiques of associative models. Here we analyse recent findings at the intersection of LLMs and cognitive science. Here we discuss how modern LLMs resurrect associationist principles, with abilities like long-distance associations enabling complex reasoning. While limitations remain in areas like causal cognition and planning, phenomena like emergence suggest room for growth. Providing examples and increasing the dimensions of the network are methods that further improve LLM abilities, mirroring facilitation effects in human cognition. Analysis of LLMs errors provides insight into human cognitive biases. Overall, we argue LLMs represent a promising development for cognitive modelling, enabling new explorations of the mechanisms underlying intelligence and reasoning from an associationist point of view. Carefully evaluating LLMs with the tools of cognitive psychology will further understand the building blocks of the human mind.</description><subject>associationism</subject><subject>cognitive psychology</subject><subject>GPT-4</subject><subject>large language models (LLMs)</subject><subject>Psychology</subject><subject>reasoning</subject><issn>1664-1078</issn><issn>1664-1078</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1LAzEQhoMoKuof8CA9irA1ycxuNicR8aNQ8OI9ZJPJurLd1E0r-O_dfljaXBImM8-88DB2LfgYoNT3YZ5-67HkEsZCKg1CHbFzURSYCa7K4733GbtK6YsPB7nkXJ6yM1AahcrFObub2q5e2ppGs-ipTSPb-dGAdp-xjXXjbDtKrqHOUbpkJ8G2ia629wX7eHn-eHrLpu-vk6fHaeaw0ItMa2c1SXDBF5XNASl36Clg8ESV5FWhFAiscuUDKhiCYAUVQpGrnATCBZtssD7aLzPvm5ntf020jVkXYl8b2y8a15JBboN2qIGkReLSaukJNQaQRakkH1gPG9Z8Wc3IO-oWvW0PoIc_XfNp6vhjBC-kHkgD4XZL6OP3ktLCzJrkqG1tR3GZjCzLkgNooYdWuWl1fUypp7DbI7hZOTNrZ2blzGydDUM3-wl3I_-G4A8cbJLq</recordid><startdate>20231020</startdate><enddate>20231020</enddate><creator>Sartori, Giuseppe</creator><creator>Orrù, Graziella</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20231020</creationdate><title>Language models and psychological sciences</title><author>Sartori, Giuseppe ; Orrù, Graziella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-99ca9e23cfd6ba534e5c4def4fdeeb20b677314b57df4739414b3b436575e143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>associationism</topic><topic>cognitive psychology</topic><topic>GPT-4</topic><topic>large language models (LLMs)</topic><topic>Psychology</topic><topic>reasoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sartori, Giuseppe</creatorcontrib><creatorcontrib>Orrù, Graziella</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sartori, Giuseppe</au><au>Orrù, Graziella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Language models and psychological sciences</atitle><jtitle>Frontiers in psychology</jtitle><addtitle>Front Psychol</addtitle><date>2023-10-20</date><risdate>2023</risdate><volume>14</volume><spage>1279317</spage><pages>1279317-</pages><issn>1664-1078</issn><eissn>1664-1078</eissn><abstract>Large language models (LLMs) are demonstrating impressive performance on many reasoning and problem-solving tasks from cognitive psychology. When tested, their accuracy is often on par with average neurotypical adults, challenging long-standing critiques of associative models. Here we analyse recent findings at the intersection of LLMs and cognitive science. Here we discuss how modern LLMs resurrect associationist principles, with abilities like long-distance associations enabling complex reasoning. While limitations remain in areas like causal cognition and planning, phenomena like emergence suggest room for growth. Providing examples and increasing the dimensions of the network are methods that further improve LLM abilities, mirroring facilitation effects in human cognition. Analysis of LLMs errors provides insight into human cognitive biases. Overall, we argue LLMs represent a promising development for cognitive modelling, enabling new explorations of the mechanisms underlying intelligence and reasoning from an associationist point of view. Carefully evaluating LLMs with the tools of cognitive psychology will further understand the building blocks of the human mind.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>37941751</pmid><doi>10.3389/fpsyg.2023.1279317</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-1078 |
ispartof | Frontiers in psychology, 2023-10, Vol.14, p.1279317 |
issn | 1664-1078 1664-1078 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_40af9c493e2a4e02a92de494f3268720 |
source | PubMed |
subjects | associationism cognitive psychology GPT-4 large language models (LLMs) Psychology reasoning |
title | Language models and psychological sciences |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Language%20models%20and%20psychological%20sciences&rft.jtitle=Frontiers%20in%20psychology&rft.au=Sartori,%20Giuseppe&rft.date=2023-10-20&rft.volume=14&rft.spage=1279317&rft.pages=1279317-&rft.issn=1664-1078&rft.eissn=1664-1078&rft_id=info:doi/10.3389/fpsyg.2023.1279317&rft_dat=%3Cproquest_doaj_%3E2888033919%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-99ca9e23cfd6ba534e5c4def4fdeeb20b677314b57df4739414b3b436575e143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2888033919&rft_id=info:pmid/37941751&rfr_iscdi=true |