Loading…

Language models and psychological sciences

Large language models (LLMs) are demonstrating impressive performance on many reasoning and problem-solving tasks from cognitive psychology. When tested, their accuracy is often on par with average neurotypical adults, challenging long-standing critiques of associative models. Here we analyse recent...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in psychology 2023-10, Vol.14, p.1279317
Main Authors: Sartori, Giuseppe, Orrù, Graziella
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-99ca9e23cfd6ba534e5c4def4fdeeb20b677314b57df4739414b3b436575e143
cites cdi_FETCH-LOGICAL-c469t-99ca9e23cfd6ba534e5c4def4fdeeb20b677314b57df4739414b3b436575e143
container_end_page
container_issue
container_start_page 1279317
container_title Frontiers in psychology
container_volume 14
creator Sartori, Giuseppe
Orrù, Graziella
description Large language models (LLMs) are demonstrating impressive performance on many reasoning and problem-solving tasks from cognitive psychology. When tested, their accuracy is often on par with average neurotypical adults, challenging long-standing critiques of associative models. Here we analyse recent findings at the intersection of LLMs and cognitive science. Here we discuss how modern LLMs resurrect associationist principles, with abilities like long-distance associations enabling complex reasoning. While limitations remain in areas like causal cognition and planning, phenomena like emergence suggest room for growth. Providing examples and increasing the dimensions of the network are methods that further improve LLM abilities, mirroring facilitation effects in human cognition. Analysis of LLMs errors provides insight into human cognitive biases. Overall, we argue LLMs represent a promising development for cognitive modelling, enabling new explorations of the mechanisms underlying intelligence and reasoning from an associationist point of view. Carefully evaluating LLMs with the tools of cognitive psychology will further understand the building blocks of the human mind.
doi_str_mv 10.3389/fpsyg.2023.1279317
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_40af9c493e2a4e02a92de494f3268720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_40af9c493e2a4e02a92de494f3268720</doaj_id><sourcerecordid>2888033919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-99ca9e23cfd6ba534e5c4def4fdeeb20b677314b57df4739414b3b436575e143</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMoKuof8CA9irA1ycxuNicR8aNQ8OI9ZJPJurLd1E0r-O_dfljaXBImM8-88DB2LfgYoNT3YZ5-67HkEsZCKg1CHbFzURSYCa7K4733GbtK6YsPB7nkXJ6yM1AahcrFObub2q5e2ppGs-ipTSPb-dGAdp-xjXXjbDtKrqHOUbpkJ8G2ia629wX7eHn-eHrLpu-vk6fHaeaw0ItMa2c1SXDBF5XNASl36Clg8ESV5FWhFAiscuUDKhiCYAUVQpGrnATCBZtssD7aLzPvm5ntf020jVkXYl8b2y8a15JBboN2qIGkReLSaukJNQaQRakkH1gPG9Z8Wc3IO-oWvW0PoIc_XfNp6vhjBC-kHkgD4XZL6OP3ktLCzJrkqG1tR3GZjCzLkgNooYdWuWl1fUypp7DbI7hZOTNrZ2blzGydDUM3-wl3I_-G4A8cbJLq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888033919</pqid></control><display><type>article</type><title>Language models and psychological sciences</title><source>PubMed</source><creator>Sartori, Giuseppe ; Orrù, Graziella</creator><creatorcontrib>Sartori, Giuseppe ; Orrù, Graziella</creatorcontrib><description>Large language models (LLMs) are demonstrating impressive performance on many reasoning and problem-solving tasks from cognitive psychology. When tested, their accuracy is often on par with average neurotypical adults, challenging long-standing critiques of associative models. Here we analyse recent findings at the intersection of LLMs and cognitive science. Here we discuss how modern LLMs resurrect associationist principles, with abilities like long-distance associations enabling complex reasoning. While limitations remain in areas like causal cognition and planning, phenomena like emergence suggest room for growth. Providing examples and increasing the dimensions of the network are methods that further improve LLM abilities, mirroring facilitation effects in human cognition. Analysis of LLMs errors provides insight into human cognitive biases. Overall, we argue LLMs represent a promising development for cognitive modelling, enabling new explorations of the mechanisms underlying intelligence and reasoning from an associationist point of view. Carefully evaluating LLMs with the tools of cognitive psychology will further understand the building blocks of the human mind.</description><identifier>ISSN: 1664-1078</identifier><identifier>EISSN: 1664-1078</identifier><identifier>DOI: 10.3389/fpsyg.2023.1279317</identifier><identifier>PMID: 37941751</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>associationism ; cognitive psychology ; GPT-4 ; large language models (LLMs) ; Psychology ; reasoning</subject><ispartof>Frontiers in psychology, 2023-10, Vol.14, p.1279317</ispartof><rights>Copyright © 2023 Sartori and Orrù.</rights><rights>Copyright © 2023 Sartori and Orrù. 2023 Sartori and Orrù</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-99ca9e23cfd6ba534e5c4def4fdeeb20b677314b57df4739414b3b436575e143</citedby><cites>FETCH-LOGICAL-c469t-99ca9e23cfd6ba534e5c4def4fdeeb20b677314b57df4739414b3b436575e143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629494/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629494/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37941751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sartori, Giuseppe</creatorcontrib><creatorcontrib>Orrù, Graziella</creatorcontrib><title>Language models and psychological sciences</title><title>Frontiers in psychology</title><addtitle>Front Psychol</addtitle><description>Large language models (LLMs) are demonstrating impressive performance on many reasoning and problem-solving tasks from cognitive psychology. When tested, their accuracy is often on par with average neurotypical adults, challenging long-standing critiques of associative models. Here we analyse recent findings at the intersection of LLMs and cognitive science. Here we discuss how modern LLMs resurrect associationist principles, with abilities like long-distance associations enabling complex reasoning. While limitations remain in areas like causal cognition and planning, phenomena like emergence suggest room for growth. Providing examples and increasing the dimensions of the network are methods that further improve LLM abilities, mirroring facilitation effects in human cognition. Analysis of LLMs errors provides insight into human cognitive biases. Overall, we argue LLMs represent a promising development for cognitive modelling, enabling new explorations of the mechanisms underlying intelligence and reasoning from an associationist point of view. Carefully evaluating LLMs with the tools of cognitive psychology will further understand the building blocks of the human mind.</description><subject>associationism</subject><subject>cognitive psychology</subject><subject>GPT-4</subject><subject>large language models (LLMs)</subject><subject>Psychology</subject><subject>reasoning</subject><issn>1664-1078</issn><issn>1664-1078</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1LAzEQhoMoKuof8CA9irA1ycxuNicR8aNQ8OI9ZJPJurLd1E0r-O_dfljaXBImM8-88DB2LfgYoNT3YZ5-67HkEsZCKg1CHbFzURSYCa7K4733GbtK6YsPB7nkXJ6yM1AahcrFObub2q5e2ppGs-ipTSPb-dGAdp-xjXXjbDtKrqHOUbpkJ8G2ia629wX7eHn-eHrLpu-vk6fHaeaw0ItMa2c1SXDBF5XNASl36Clg8ESV5FWhFAiscuUDKhiCYAUVQpGrnATCBZtssD7aLzPvm5ntf020jVkXYl8b2y8a15JBboN2qIGkReLSaukJNQaQRakkH1gPG9Z8Wc3IO-oWvW0PoIc_XfNp6vhjBC-kHkgD4XZL6OP3ktLCzJrkqG1tR3GZjCzLkgNooYdWuWl1fUypp7DbI7hZOTNrZ2blzGydDUM3-wl3I_-G4A8cbJLq</recordid><startdate>20231020</startdate><enddate>20231020</enddate><creator>Sartori, Giuseppe</creator><creator>Orrù, Graziella</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20231020</creationdate><title>Language models and psychological sciences</title><author>Sartori, Giuseppe ; Orrù, Graziella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-99ca9e23cfd6ba534e5c4def4fdeeb20b677314b57df4739414b3b436575e143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>associationism</topic><topic>cognitive psychology</topic><topic>GPT-4</topic><topic>large language models (LLMs)</topic><topic>Psychology</topic><topic>reasoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sartori, Giuseppe</creatorcontrib><creatorcontrib>Orrù, Graziella</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sartori, Giuseppe</au><au>Orrù, Graziella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Language models and psychological sciences</atitle><jtitle>Frontiers in psychology</jtitle><addtitle>Front Psychol</addtitle><date>2023-10-20</date><risdate>2023</risdate><volume>14</volume><spage>1279317</spage><pages>1279317-</pages><issn>1664-1078</issn><eissn>1664-1078</eissn><abstract>Large language models (LLMs) are demonstrating impressive performance on many reasoning and problem-solving tasks from cognitive psychology. When tested, their accuracy is often on par with average neurotypical adults, challenging long-standing critiques of associative models. Here we analyse recent findings at the intersection of LLMs and cognitive science. Here we discuss how modern LLMs resurrect associationist principles, with abilities like long-distance associations enabling complex reasoning. While limitations remain in areas like causal cognition and planning, phenomena like emergence suggest room for growth. Providing examples and increasing the dimensions of the network are methods that further improve LLM abilities, mirroring facilitation effects in human cognition. Analysis of LLMs errors provides insight into human cognitive biases. Overall, we argue LLMs represent a promising development for cognitive modelling, enabling new explorations of the mechanisms underlying intelligence and reasoning from an associationist point of view. Carefully evaluating LLMs with the tools of cognitive psychology will further understand the building blocks of the human mind.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>37941751</pmid><doi>10.3389/fpsyg.2023.1279317</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-1078
ispartof Frontiers in psychology, 2023-10, Vol.14, p.1279317
issn 1664-1078
1664-1078
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_40af9c493e2a4e02a92de494f3268720
source PubMed
subjects associationism
cognitive psychology
GPT-4
large language models (LLMs)
Psychology
reasoning
title Language models and psychological sciences
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Language%20models%20and%20psychological%20sciences&rft.jtitle=Frontiers%20in%20psychology&rft.au=Sartori,%20Giuseppe&rft.date=2023-10-20&rft.volume=14&rft.spage=1279317&rft.pages=1279317-&rft.issn=1664-1078&rft.eissn=1664-1078&rft_id=info:doi/10.3389/fpsyg.2023.1279317&rft_dat=%3Cproquest_doaj_%3E2888033919%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-99ca9e23cfd6ba534e5c4def4fdeeb20b677314b57df4739414b3b436575e143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2888033919&rft_id=info:pmid/37941751&rfr_iscdi=true