Loading…

On Primary Decomposition of Hermite Projectors

An ideal projector on the space of polynomials C[x]=C[x1,…,xd] is a projector whose kernel is an ideal in C[x]. Every ideal projector P can be written as a sum of ideal projectors P(k) such that the intersection of their kernels kerP(k) is a primary decomposition of the ideal kerP. In this paper, we...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2023-09, Vol.15 (9), p.1658
Main Authors: Shekhtman, Boris, Skrzypek, Lesław, Tuesink, Brian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c361t-559336ac92013c8f475f36728055c5c8c71648d43265d6b487a3e149fba1713b3
container_end_page
container_issue 9
container_start_page 1658
container_title Symmetry (Basel)
container_volume 15
creator Shekhtman, Boris
Skrzypek, Lesław
Tuesink, Brian
description An ideal projector on the space of polynomials C[x]=C[x1,…,xd] is a projector whose kernel is an ideal in C[x]. Every ideal projector P can be written as a sum of ideal projectors P(k) such that the intersection of their kernels kerP(k) is a primary decomposition of the ideal kerP. In this paper, we show that P is a limit of Lagrange projectors if and only if each P(k) is. As an application, we construct an ideal projector P whose kernel is a symmetric ideal, yet P is not a limit of Lagrange projectors.
doi_str_mv 10.3390/sym15091658
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_40b7a35a1533423ebee603285874978e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A771804544</galeid><doaj_id>oai_doaj_org_article_40b7a35a1533423ebee603285874978e</doaj_id><sourcerecordid>A771804544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-559336ac92013c8f475f36728055c5c8c71648d43265d6b487a3e149fba1713b3</originalsourceid><addsrcrecordid>eNpNUctqwzAQNKWFhjSn_oChx-JU8up5DOkjgUB6aM9ClqWgEFup5Bzy91XrUrJ72GWYGQamKO4xmgNI9JTOHaZIYkbFVTGpEYdKSEmuL_7bYpbSHuWhiBKGJsV825fv0Xc6nstna0J3DMkPPvRlcOXKxs4PNhPC3pohxHRX3Dh9SHb2d6fF5-vLx3JVbbZv6-ViUxlgeKgolQBMG1kjDEY4wqkDxmuBKDXUCMMxI6IlUDPasoYIrsFiIl2jMcfQwLRYj75t0Ht1HAOqoL36BULcKR0Hbw5WEdRkNdWYApAabGMtQ1ALKjiRXNjs9TB6HWP4Otk0qH04xT7HV7VgMgepKcus-cja6WzqexeGqE3e1nbehN46n_EF51ggQgnJgsdRYGJIKVr3HxMj9VOIuigEvgFkLXlw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869648256</pqid></control><display><type>article</type><title>On Primary Decomposition of Hermite Projectors</title><source>Publicly Available Content Database</source><creator>Shekhtman, Boris ; Skrzypek, Lesław ; Tuesink, Brian</creator><creatorcontrib>Shekhtman, Boris ; Skrzypek, Lesław ; Tuesink, Brian</creatorcontrib><description>An ideal projector on the space of polynomials C[x]=C[x1,…,xd] is a projector whose kernel is an ideal in C[x]. Every ideal projector P can be written as a sum of ideal projectors P(k) such that the intersection of their kernels kerP(k) is a primary decomposition of the ideal kerP. In this paper, we show that P is a limit of Lagrange projectors if and only if each P(k) is. As an application, we construct an ideal projector P whose kernel is a symmetric ideal, yet P is not a limit of Lagrange projectors.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym15091658</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Commuting ; Decomposition ; hermite projector ; ideal projector ; Kernels ; Polynomials ; Projectors ; smoothable ideals ; Variables</subject><ispartof>Symmetry (Basel), 2023-09, Vol.15 (9), p.1658</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-559336ac92013c8f475f36728055c5c8c71648d43265d6b487a3e149fba1713b3</cites><orcidid>0000-0002-4705-8440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2869648256/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2869648256?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Shekhtman, Boris</creatorcontrib><creatorcontrib>Skrzypek, Lesław</creatorcontrib><creatorcontrib>Tuesink, Brian</creatorcontrib><title>On Primary Decomposition of Hermite Projectors</title><title>Symmetry (Basel)</title><description>An ideal projector on the space of polynomials C[x]=C[x1,…,xd] is a projector whose kernel is an ideal in C[x]. Every ideal projector P can be written as a sum of ideal projectors P(k) such that the intersection of their kernels kerP(k) is a primary decomposition of the ideal kerP. In this paper, we show that P is a limit of Lagrange projectors if and only if each P(k) is. As an application, we construct an ideal projector P whose kernel is a symmetric ideal, yet P is not a limit of Lagrange projectors.</description><subject>Commuting</subject><subject>Decomposition</subject><subject>hermite projector</subject><subject>ideal projector</subject><subject>Kernels</subject><subject>Polynomials</subject><subject>Projectors</subject><subject>smoothable ideals</subject><subject>Variables</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctqwzAQNKWFhjSn_oChx-JU8up5DOkjgUB6aM9ClqWgEFup5Bzy91XrUrJ72GWYGQamKO4xmgNI9JTOHaZIYkbFVTGpEYdKSEmuL_7bYpbSHuWhiBKGJsV825fv0Xc6nstna0J3DMkPPvRlcOXKxs4PNhPC3pohxHRX3Dh9SHb2d6fF5-vLx3JVbbZv6-ViUxlgeKgolQBMG1kjDEY4wqkDxmuBKDXUCMMxI6IlUDPasoYIrsFiIl2jMcfQwLRYj75t0Ht1HAOqoL36BULcKR0Hbw5WEdRkNdWYApAabGMtQ1ALKjiRXNjs9TB6HWP4Otk0qH04xT7HV7VgMgepKcus-cja6WzqexeGqE3e1nbehN46n_EF51ggQgnJgsdRYGJIKVr3HxMj9VOIuigEvgFkLXlw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Shekhtman, Boris</creator><creator>Skrzypek, Lesław</creator><creator>Tuesink, Brian</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4705-8440</orcidid></search><sort><creationdate>20230901</creationdate><title>On Primary Decomposition of Hermite Projectors</title><author>Shekhtman, Boris ; Skrzypek, Lesław ; Tuesink, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-559336ac92013c8f475f36728055c5c8c71648d43265d6b487a3e149fba1713b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Commuting</topic><topic>Decomposition</topic><topic>hermite projector</topic><topic>ideal projector</topic><topic>Kernels</topic><topic>Polynomials</topic><topic>Projectors</topic><topic>smoothable ideals</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shekhtman, Boris</creatorcontrib><creatorcontrib>Skrzypek, Lesław</creatorcontrib><creatorcontrib>Tuesink, Brian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shekhtman, Boris</au><au>Skrzypek, Lesław</au><au>Tuesink, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Primary Decomposition of Hermite Projectors</atitle><jtitle>Symmetry (Basel)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>15</volume><issue>9</issue><spage>1658</spage><pages>1658-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>An ideal projector on the space of polynomials C[x]=C[x1,…,xd] is a projector whose kernel is an ideal in C[x]. Every ideal projector P can be written as a sum of ideal projectors P(k) such that the intersection of their kernels kerP(k) is a primary decomposition of the ideal kerP. In this paper, we show that P is a limit of Lagrange projectors if and only if each P(k) is. As an application, we construct an ideal projector P whose kernel is a symmetric ideal, yet P is not a limit of Lagrange projectors.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym15091658</doi><orcidid>https://orcid.org/0000-0002-4705-8440</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2023-09, Vol.15 (9), p.1658
issn 2073-8994
2073-8994
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_40b7a35a1533423ebee603285874978e
source Publicly Available Content Database
subjects Commuting
Decomposition
hermite projector
ideal projector
Kernels
Polynomials
Projectors
smoothable ideals
Variables
title On Primary Decomposition of Hermite Projectors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A05%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Primary%20Decomposition%20of%20Hermite%20Projectors&rft.jtitle=Symmetry%20(Basel)&rft.au=Shekhtman,%20Boris&rft.date=2023-09-01&rft.volume=15&rft.issue=9&rft.spage=1658&rft.pages=1658-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym15091658&rft_dat=%3Cgale_doaj_%3EA771804544%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-559336ac92013c8f475f36728055c5c8c71648d43265d6b487a3e149fba1713b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869648256&rft_id=info:pmid/&rft_galeid=A771804544&rfr_iscdi=true