Loading…

Metric perturbations in noncommutative gravity

A bstract We use the framework of Hopf algebra and noncommutative differential geometry to build a noncommutative (NC) theory of gravity in a bottom-up approach. Noncommutativity is introduced via deformed Hopf algebra of diffeomorphisms by means of a Drinfeld twist. The final result of the construc...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2024-06, Vol.2024 (6), p.130-32, Article 130
Main Authors: Herceg, Nikola, Jurić, Tajron, Samsarov, Andjelo, Smolić, Ivica
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c301t-9ee25358be5ca06acbdfd9dd65ed867085b0df7e99e2d0dec06f708f1371b52a3
container_end_page 32
container_issue 6
container_start_page 130
container_title The journal of high energy physics
container_volume 2024
creator Herceg, Nikola
Jurić, Tajron
Samsarov, Andjelo
Smolić, Ivica
description A bstract We use the framework of Hopf algebra and noncommutative differential geometry to build a noncommutative (NC) theory of gravity in a bottom-up approach. Noncommutativity is introduced via deformed Hopf algebra of diffeomorphisms by means of a Drinfeld twist. The final result of the construction is a general formalism for obtaining NC corrections to the classical theory of gravity for a wide class of deformations and a general background. This also includes a novel proposal for noncommutative Einstein manifold. Moreover, the general construction is applied to the case of a linearized gravitational perturbation theory to describe a NC deformation of the metric perturbations. We specifically present an example for the Schwarzschild background and axial perturbations, which gives rise to a generalization of the work by Regge and Wheeler. All calculations are performed up to first order in perturbation of the metric and noncommutativity parameter. The main result is the noncommutative Regge-Wheeler potential. Finally, we comment on some differences in properties between the Regge-Wheeler potential and its noncommutative counterpart.
doi_str_mv 10.1007/JHEP06(2024)130
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_40be7ce949c64238937810fa3f5c061d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_40be7ce949c64238937810fa3f5c061d</doaj_id><sourcerecordid>3070143061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-9ee25358be5ca06acbdfd9dd65ed867085b0df7e99e2d0dec06f708f1371b52a3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqUws1ZigSHtOU7ieERVoUVFMMBsOfa5StXGxU4q9d_jEgQsTHd6eu-70yPkmsKYAvDJ03z2CsVtCml2RxmckAGFVCRlxsXpn_2cXISwBqA5FTAg42dsfa1HO_Rt5yvV1q4Jo7oZNa7Rbrvt2ijtcbTyal-3h0tyZtUm4NX3HJL3h9nbdJ4sXx4X0_tlohnQNhGIac7yssJcKyiUrow1wpgiR1MWHMq8AmM5CoGpAYMaChtVSxmnVZ4qNiSLnmucWsudr7fKH6RTtfwSnF9J5dtab1BmUCHXKDKhiyxlpWC8pGAVs3nEUhNZNz1r591Hh6GVa9f5Jr4vGXCgGYu26Jr0Lu1dCB7tz1UK8liw7AuWx4JlLDgmoE-E6GxW6H-5_0U-AfEzfG8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070143061</pqid></control><display><type>article</type><title>Metric perturbations in noncommutative gravity</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Herceg, Nikola ; Jurić, Tajron ; Samsarov, Andjelo ; Smolić, Ivica</creator><creatorcontrib>Herceg, Nikola ; Jurić, Tajron ; Samsarov, Andjelo ; Smolić, Ivica</creatorcontrib><description>A bstract We use the framework of Hopf algebra and noncommutative differential geometry to build a noncommutative (NC) theory of gravity in a bottom-up approach. Noncommutativity is introduced via deformed Hopf algebra of diffeomorphisms by means of a Drinfeld twist. The final result of the construction is a general formalism for obtaining NC corrections to the classical theory of gravity for a wide class of deformations and a general background. This also includes a novel proposal for noncommutative Einstein manifold. Moreover, the general construction is applied to the case of a linearized gravitational perturbation theory to describe a NC deformation of the metric perturbations. We specifically present an example for the Schwarzschild background and axial perturbations, which gives rise to a generalization of the work by Regge and Wheeler. All calculations are performed up to first order in perturbation of the metric and noncommutativity parameter. The main result is the noncommutative Regge-Wheeler potential. Finally, we comment on some differences in properties between the Regge-Wheeler potential and its noncommutative counterpart.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP06(2024)130</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Black Holes ; Classical and Quantum Gravitation ; Collaboration ; Deformation ; Differential geometry ; Elementary Particles ; Geometry ; Gravitation theory ; Gravitational waves ; Gravity ; Isomorphism ; Models of Quantum Gravity ; Non-Commutative Geometry ; Perturbation theory ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Radiation ; Regular Article - Theoretical Physics ; Relativity Theory ; Space-Time Symmetries ; Spectrum analysis ; Stars &amp; galaxies ; String Theory ; Theory of relativity ; Universe</subject><ispartof>The journal of high energy physics, 2024-06, Vol.2024 (6), p.130-32, Article 130</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-9ee25358be5ca06acbdfd9dd65ed867085b0df7e99e2d0dec06f708f1371b52a3</cites><orcidid>0000-0002-8606-9118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3070143061/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3070143061?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Herceg, Nikola</creatorcontrib><creatorcontrib>Jurić, Tajron</creatorcontrib><creatorcontrib>Samsarov, Andjelo</creatorcontrib><creatorcontrib>Smolić, Ivica</creatorcontrib><title>Metric perturbations in noncommutative gravity</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We use the framework of Hopf algebra and noncommutative differential geometry to build a noncommutative (NC) theory of gravity in a bottom-up approach. Noncommutativity is introduced via deformed Hopf algebra of diffeomorphisms by means of a Drinfeld twist. The final result of the construction is a general formalism for obtaining NC corrections to the classical theory of gravity for a wide class of deformations and a general background. This also includes a novel proposal for noncommutative Einstein manifold. Moreover, the general construction is applied to the case of a linearized gravitational perturbation theory to describe a NC deformation of the metric perturbations. We specifically present an example for the Schwarzschild background and axial perturbations, which gives rise to a generalization of the work by Regge and Wheeler. All calculations are performed up to first order in perturbation of the metric and noncommutativity parameter. The main result is the noncommutative Regge-Wheeler potential. Finally, we comment on some differences in properties between the Regge-Wheeler potential and its noncommutative counterpart.</description><subject>Algebra</subject><subject>Black Holes</subject><subject>Classical and Quantum Gravitation</subject><subject>Collaboration</subject><subject>Deformation</subject><subject>Differential geometry</subject><subject>Elementary Particles</subject><subject>Geometry</subject><subject>Gravitation theory</subject><subject>Gravitational waves</subject><subject>Gravity</subject><subject>Isomorphism</subject><subject>Models of Quantum Gravity</subject><subject>Non-Commutative Geometry</subject><subject>Perturbation theory</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Radiation</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Space-Time Symmetries</subject><subject>Spectrum analysis</subject><subject>Stars &amp; galaxies</subject><subject>String Theory</subject><subject>Theory of relativity</subject><subject>Universe</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kDFPwzAQhS0EEqUws1ZigSHtOU7ieERVoUVFMMBsOfa5StXGxU4q9d_jEgQsTHd6eu-70yPkmsKYAvDJ03z2CsVtCml2RxmckAGFVCRlxsXpn_2cXISwBqA5FTAg42dsfa1HO_Rt5yvV1q4Jo7oZNa7Rbrvt2ijtcbTyal-3h0tyZtUm4NX3HJL3h9nbdJ4sXx4X0_tlohnQNhGIac7yssJcKyiUrow1wpgiR1MWHMq8AmM5CoGpAYMaChtVSxmnVZ4qNiSLnmucWsudr7fKH6RTtfwSnF9J5dtab1BmUCHXKDKhiyxlpWC8pGAVs3nEUhNZNz1r591Hh6GVa9f5Jr4vGXCgGYu26Jr0Lu1dCB7tz1UK8liw7AuWx4JlLDgmoE-E6GxW6H-5_0U-AfEzfG8</recordid><startdate>20240619</startdate><enddate>20240619</enddate><creator>Herceg, Nikola</creator><creator>Jurić, Tajron</creator><creator>Samsarov, Andjelo</creator><creator>Smolić, Ivica</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8606-9118</orcidid></search><sort><creationdate>20240619</creationdate><title>Metric perturbations in noncommutative gravity</title><author>Herceg, Nikola ; Jurić, Tajron ; Samsarov, Andjelo ; Smolić, Ivica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-9ee25358be5ca06acbdfd9dd65ed867085b0df7e99e2d0dec06f708f1371b52a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Black Holes</topic><topic>Classical and Quantum Gravitation</topic><topic>Collaboration</topic><topic>Deformation</topic><topic>Differential geometry</topic><topic>Elementary Particles</topic><topic>Geometry</topic><topic>Gravitation theory</topic><topic>Gravitational waves</topic><topic>Gravity</topic><topic>Isomorphism</topic><topic>Models of Quantum Gravity</topic><topic>Non-Commutative Geometry</topic><topic>Perturbation theory</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Radiation</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Space-Time Symmetries</topic><topic>Spectrum analysis</topic><topic>Stars &amp; galaxies</topic><topic>String Theory</topic><topic>Theory of relativity</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herceg, Nikola</creatorcontrib><creatorcontrib>Jurić, Tajron</creatorcontrib><creatorcontrib>Samsarov, Andjelo</creatorcontrib><creatorcontrib>Smolić, Ivica</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herceg, Nikola</au><au>Jurić, Tajron</au><au>Samsarov, Andjelo</au><au>Smolić, Ivica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metric perturbations in noncommutative gravity</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2024-06-19</date><risdate>2024</risdate><volume>2024</volume><issue>6</issue><spage>130</spage><epage>32</epage><pages>130-32</pages><artnum>130</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract We use the framework of Hopf algebra and noncommutative differential geometry to build a noncommutative (NC) theory of gravity in a bottom-up approach. Noncommutativity is introduced via deformed Hopf algebra of diffeomorphisms by means of a Drinfeld twist. The final result of the construction is a general formalism for obtaining NC corrections to the classical theory of gravity for a wide class of deformations and a general background. This also includes a novel proposal for noncommutative Einstein manifold. Moreover, the general construction is applied to the case of a linearized gravitational perturbation theory to describe a NC deformation of the metric perturbations. We specifically present an example for the Schwarzschild background and axial perturbations, which gives rise to a generalization of the work by Regge and Wheeler. All calculations are performed up to first order in perturbation of the metric and noncommutativity parameter. The main result is the noncommutative Regge-Wheeler potential. Finally, we comment on some differences in properties between the Regge-Wheeler potential and its noncommutative counterpart.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP06(2024)130</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-8606-9118</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2024-06, Vol.2024 (6), p.130-32, Article 130
issn 1029-8479
1029-8479
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_40be7ce949c64238937810fa3f5c061d
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Algebra
Black Holes
Classical and Quantum Gravitation
Collaboration
Deformation
Differential geometry
Elementary Particles
Geometry
Gravitation theory
Gravitational waves
Gravity
Isomorphism
Models of Quantum Gravity
Non-Commutative Geometry
Perturbation theory
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Radiation
Regular Article - Theoretical Physics
Relativity Theory
Space-Time Symmetries
Spectrum analysis
Stars & galaxies
String Theory
Theory of relativity
Universe
title Metric perturbations in noncommutative gravity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metric%20perturbations%20in%20noncommutative%20gravity&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Herceg,%20Nikola&rft.date=2024-06-19&rft.volume=2024&rft.issue=6&rft.spage=130&rft.epage=32&rft.pages=130-32&rft.artnum=130&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP06(2024)130&rft_dat=%3Cproquest_doaj_%3E3070143061%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-9ee25358be5ca06acbdfd9dd65ed867085b0df7e99e2d0dec06f708f1371b52a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3070143061&rft_id=info:pmid/&rfr_iscdi=true