Loading…
Metric perturbations in noncommutative gravity
A bstract We use the framework of Hopf algebra and noncommutative differential geometry to build a noncommutative (NC) theory of gravity in a bottom-up approach. Noncommutativity is introduced via deformed Hopf algebra of diffeomorphisms by means of a Drinfeld twist. The final result of the construc...
Saved in:
Published in: | The journal of high energy physics 2024-06, Vol.2024 (6), p.130-32, Article 130 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c301t-9ee25358be5ca06acbdfd9dd65ed867085b0df7e99e2d0dec06f708f1371b52a3 |
container_end_page | 32 |
container_issue | 6 |
container_start_page | 130 |
container_title | The journal of high energy physics |
container_volume | 2024 |
creator | Herceg, Nikola Jurić, Tajron Samsarov, Andjelo Smolić, Ivica |
description | A
bstract
We use the framework of Hopf algebra and noncommutative differential geometry to build a noncommutative (NC) theory of gravity in a bottom-up approach. Noncommutativity is introduced via deformed Hopf algebra of diffeomorphisms by means of a Drinfeld twist. The final result of the construction is a general formalism for obtaining NC corrections to the classical theory of gravity for a wide class of deformations and a general background. This also includes a novel proposal for noncommutative Einstein manifold. Moreover, the general construction is applied to the case of a linearized gravitational perturbation theory to describe a NC deformation of the metric perturbations. We specifically present an example for the Schwarzschild background and axial perturbations, which gives rise to a generalization of the work by Regge and Wheeler. All calculations are performed up to first order in perturbation of the metric and noncommutativity parameter. The main result is the noncommutative Regge-Wheeler potential. Finally, we comment on some differences in properties between the Regge-Wheeler potential and its noncommutative counterpart. |
doi_str_mv | 10.1007/JHEP06(2024)130 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_40be7ce949c64238937810fa3f5c061d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_40be7ce949c64238937810fa3f5c061d</doaj_id><sourcerecordid>3070143061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-9ee25358be5ca06acbdfd9dd65ed867085b0df7e99e2d0dec06f708f1371b52a3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqUws1ZigSHtOU7ieERVoUVFMMBsOfa5StXGxU4q9d_jEgQsTHd6eu-70yPkmsKYAvDJ03z2CsVtCml2RxmckAGFVCRlxsXpn_2cXISwBqA5FTAg42dsfa1HO_Rt5yvV1q4Jo7oZNa7Rbrvt2ijtcbTyal-3h0tyZtUm4NX3HJL3h9nbdJ4sXx4X0_tlohnQNhGIac7yssJcKyiUrow1wpgiR1MWHMq8AmM5CoGpAYMaChtVSxmnVZ4qNiSLnmucWsudr7fKH6RTtfwSnF9J5dtab1BmUCHXKDKhiyxlpWC8pGAVs3nEUhNZNz1r591Hh6GVa9f5Jr4vGXCgGYu26Jr0Lu1dCB7tz1UK8liw7AuWx4JlLDgmoE-E6GxW6H-5_0U-AfEzfG8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070143061</pqid></control><display><type>article</type><title>Metric perturbations in noncommutative gravity</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Herceg, Nikola ; Jurić, Tajron ; Samsarov, Andjelo ; Smolić, Ivica</creator><creatorcontrib>Herceg, Nikola ; Jurić, Tajron ; Samsarov, Andjelo ; Smolić, Ivica</creatorcontrib><description>A
bstract
We use the framework of Hopf algebra and noncommutative differential geometry to build a noncommutative (NC) theory of gravity in a bottom-up approach. Noncommutativity is introduced via deformed Hopf algebra of diffeomorphisms by means of a Drinfeld twist. The final result of the construction is a general formalism for obtaining NC corrections to the classical theory of gravity for a wide class of deformations and a general background. This also includes a novel proposal for noncommutative Einstein manifold. Moreover, the general construction is applied to the case of a linearized gravitational perturbation theory to describe a NC deformation of the metric perturbations. We specifically present an example for the Schwarzschild background and axial perturbations, which gives rise to a generalization of the work by Regge and Wheeler. All calculations are performed up to first order in perturbation of the metric and noncommutativity parameter. The main result is the noncommutative Regge-Wheeler potential. Finally, we comment on some differences in properties between the Regge-Wheeler potential and its noncommutative counterpart.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP06(2024)130</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Black Holes ; Classical and Quantum Gravitation ; Collaboration ; Deformation ; Differential geometry ; Elementary Particles ; Geometry ; Gravitation theory ; Gravitational waves ; Gravity ; Isomorphism ; Models of Quantum Gravity ; Non-Commutative Geometry ; Perturbation theory ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Radiation ; Regular Article - Theoretical Physics ; Relativity Theory ; Space-Time Symmetries ; Spectrum analysis ; Stars & galaxies ; String Theory ; Theory of relativity ; Universe</subject><ispartof>The journal of high energy physics, 2024-06, Vol.2024 (6), p.130-32, Article 130</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-9ee25358be5ca06acbdfd9dd65ed867085b0df7e99e2d0dec06f708f1371b52a3</cites><orcidid>0000-0002-8606-9118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3070143061/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3070143061?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Herceg, Nikola</creatorcontrib><creatorcontrib>Jurić, Tajron</creatorcontrib><creatorcontrib>Samsarov, Andjelo</creatorcontrib><creatorcontrib>Smolić, Ivica</creatorcontrib><title>Metric perturbations in noncommutative gravity</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
We use the framework of Hopf algebra and noncommutative differential geometry to build a noncommutative (NC) theory of gravity in a bottom-up approach. Noncommutativity is introduced via deformed Hopf algebra of diffeomorphisms by means of a Drinfeld twist. The final result of the construction is a general formalism for obtaining NC corrections to the classical theory of gravity for a wide class of deformations and a general background. This also includes a novel proposal for noncommutative Einstein manifold. Moreover, the general construction is applied to the case of a linearized gravitational perturbation theory to describe a NC deformation of the metric perturbations. We specifically present an example for the Schwarzschild background and axial perturbations, which gives rise to a generalization of the work by Regge and Wheeler. All calculations are performed up to first order in perturbation of the metric and noncommutativity parameter. The main result is the noncommutative Regge-Wheeler potential. Finally, we comment on some differences in properties between the Regge-Wheeler potential and its noncommutative counterpart.</description><subject>Algebra</subject><subject>Black Holes</subject><subject>Classical and Quantum Gravitation</subject><subject>Collaboration</subject><subject>Deformation</subject><subject>Differential geometry</subject><subject>Elementary Particles</subject><subject>Geometry</subject><subject>Gravitation theory</subject><subject>Gravitational waves</subject><subject>Gravity</subject><subject>Isomorphism</subject><subject>Models of Quantum Gravity</subject><subject>Non-Commutative Geometry</subject><subject>Perturbation theory</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Radiation</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Space-Time Symmetries</subject><subject>Spectrum analysis</subject><subject>Stars & galaxies</subject><subject>String Theory</subject><subject>Theory of relativity</subject><subject>Universe</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kDFPwzAQhS0EEqUws1ZigSHtOU7ieERVoUVFMMBsOfa5StXGxU4q9d_jEgQsTHd6eu-70yPkmsKYAvDJ03z2CsVtCml2RxmckAGFVCRlxsXpn_2cXISwBqA5FTAg42dsfa1HO_Rt5yvV1q4Jo7oZNa7Rbrvt2ijtcbTyal-3h0tyZtUm4NX3HJL3h9nbdJ4sXx4X0_tlohnQNhGIac7yssJcKyiUrow1wpgiR1MWHMq8AmM5CoGpAYMaChtVSxmnVZ4qNiSLnmucWsudr7fKH6RTtfwSnF9J5dtab1BmUCHXKDKhiyxlpWC8pGAVs3nEUhNZNz1r591Hh6GVa9f5Jr4vGXCgGYu26Jr0Lu1dCB7tz1UK8liw7AuWx4JlLDgmoE-E6GxW6H-5_0U-AfEzfG8</recordid><startdate>20240619</startdate><enddate>20240619</enddate><creator>Herceg, Nikola</creator><creator>Jurić, Tajron</creator><creator>Samsarov, Andjelo</creator><creator>Smolić, Ivica</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8606-9118</orcidid></search><sort><creationdate>20240619</creationdate><title>Metric perturbations in noncommutative gravity</title><author>Herceg, Nikola ; Jurić, Tajron ; Samsarov, Andjelo ; Smolić, Ivica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-9ee25358be5ca06acbdfd9dd65ed867085b0df7e99e2d0dec06f708f1371b52a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Black Holes</topic><topic>Classical and Quantum Gravitation</topic><topic>Collaboration</topic><topic>Deformation</topic><topic>Differential geometry</topic><topic>Elementary Particles</topic><topic>Geometry</topic><topic>Gravitation theory</topic><topic>Gravitational waves</topic><topic>Gravity</topic><topic>Isomorphism</topic><topic>Models of Quantum Gravity</topic><topic>Non-Commutative Geometry</topic><topic>Perturbation theory</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Radiation</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Space-Time Symmetries</topic><topic>Spectrum analysis</topic><topic>Stars & galaxies</topic><topic>String Theory</topic><topic>Theory of relativity</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herceg, Nikola</creatorcontrib><creatorcontrib>Jurić, Tajron</creatorcontrib><creatorcontrib>Samsarov, Andjelo</creatorcontrib><creatorcontrib>Smolić, Ivica</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herceg, Nikola</au><au>Jurić, Tajron</au><au>Samsarov, Andjelo</au><au>Smolić, Ivica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metric perturbations in noncommutative gravity</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2024-06-19</date><risdate>2024</risdate><volume>2024</volume><issue>6</issue><spage>130</spage><epage>32</epage><pages>130-32</pages><artnum>130</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
We use the framework of Hopf algebra and noncommutative differential geometry to build a noncommutative (NC) theory of gravity in a bottom-up approach. Noncommutativity is introduced via deformed Hopf algebra of diffeomorphisms by means of a Drinfeld twist. The final result of the construction is a general formalism for obtaining NC corrections to the classical theory of gravity for a wide class of deformations and a general background. This also includes a novel proposal for noncommutative Einstein manifold. Moreover, the general construction is applied to the case of a linearized gravitational perturbation theory to describe a NC deformation of the metric perturbations. We specifically present an example for the Schwarzschild background and axial perturbations, which gives rise to a generalization of the work by Regge and Wheeler. All calculations are performed up to first order in perturbation of the metric and noncommutativity parameter. The main result is the noncommutative Regge-Wheeler potential. Finally, we comment on some differences in properties between the Regge-Wheeler potential and its noncommutative counterpart.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP06(2024)130</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-8606-9118</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2024-06, Vol.2024 (6), p.130-32, Article 130 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_40be7ce949c64238937810fa3f5c061d |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Algebra Black Holes Classical and Quantum Gravitation Collaboration Deformation Differential geometry Elementary Particles Geometry Gravitation theory Gravitational waves Gravity Isomorphism Models of Quantum Gravity Non-Commutative Geometry Perturbation theory Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Radiation Regular Article - Theoretical Physics Relativity Theory Space-Time Symmetries Spectrum analysis Stars & galaxies String Theory Theory of relativity Universe |
title | Metric perturbations in noncommutative gravity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metric%20perturbations%20in%20noncommutative%20gravity&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Herceg,%20Nikola&rft.date=2024-06-19&rft.volume=2024&rft.issue=6&rft.spage=130&rft.epage=32&rft.pages=130-32&rft.artnum=130&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP06(2024)130&rft_dat=%3Cproquest_doaj_%3E3070143061%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-9ee25358be5ca06acbdfd9dd65ed867085b0df7e99e2d0dec06f708f1371b52a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3070143061&rft_id=info:pmid/&rfr_iscdi=true |