Loading…

Sustainable Production of Hydrogen by Steam Reforming of Ethanol Using Cobalt Supported on Nanoporous Zeolitic Material

Cobalt catalysts supported on Y zeolite and mesoporized Y zeolite (Y-mod) have been studied in steam reforming of ethanol (SRE). Specifically, the effect of the mesoporosity and the acidity of the y zeolite as a support has been explored. Mesoporous were generated on Y zeolite by treatment with NH4F...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2020-09, Vol.10 (10), p.1934
Main Authors: da Costa-Serra, Javier Francisco, Navarro, Maria Teresa, Rey, Fernando, Chica, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cobalt catalysts supported on Y zeolite and mesoporized Y zeolite (Y-mod) have been studied in steam reforming of ethanol (SRE). Specifically, the effect of the mesoporosity and the acidity of the y zeolite as a support has been explored. Mesoporous were generated on Y zeolite by treatment with NH4F and the acidity was neutralized by Na incorporation. Four cobalt catalysts supported on Y zeolite have been prepared, two using Y zeolite without mesoporous (Co/Y, Co/Y-Na), and two using Y zeolite with mesoporous (Co/Y-mod and Co/Y-mod-Na). All catalysts showed a high activity, with ethanol conversion values close to 100%. The main differences were found in the distribution of the reaction products. Co/Y and Co/Y-mod catalysts showed high selectivity to ethylene and low hydrogen production, which was explained by their high acidity. On the contrary, neutralization of the acid sites could explain the higher hydrogen selectivity and the lower ethylene yields exhibited by the Co/Y-Na and Co/Y-mod-Na. In addition, the physicochemical characterization of these catalysts by XRD, BET surface area, temperature-programmed reduction (TPR), and TEM allowed to connect the presence of mesoporous with the formation of metallic cobalt particles with small size, high dispersion, and with high interaction with the zeolitic support, explaining the high reforming activity exhibited by the co/y-mod-Na sample as well as its higher hydrogen selectivity. It has been also observed that the formation of coke is affected by the presence of mesoporous and acidity. Both properties seem to have an opposite effect on the reforming catalyst, decreasing and increasing the coke deposition, respectively.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano10101934