Loading…

Real-Time Imaging Processing of Squint Spaceborne SAR with High-Resolution Based on Nonuniform PRI Design

The real-time imaging research of squint spaceborne synthetic aperture radar (SAR) with high resolution has significant value in both military and civil fields, which makes it a hot issue in SAR research. It is necessary to solve the contradictory problems of nonlinear trajectory and efficient imagi...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2022-08, Vol.14 (15), p.3725
Main Authors: Jin, Yanghao, Liang, Buge, Chen, Jianlai, Xiong, Yi, Xiong, Mingyao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The real-time imaging research of squint spaceborne synthetic aperture radar (SAR) with high resolution has significant value in both military and civil fields, which makes it a hot issue in SAR research. It is necessary to solve the contradictory problems of nonlinear trajectory and efficient imaging at the same time in order to achieve the two goals, high-resolution and real-time imaging. A large number of complex operations are required in the accurate correction algorithms for nonlinear trajectory, which will reduce the imaging efficiency, and this problem becomes more prominent with the improvement of resolution. To solve the above problems, this paper proposes a new real-time imaging processing of squint high-resolution SAR, which eliminates the velocity–azimuth variation caused by nonlinear trajectory in the data acquisition stage through nonuniform pulse repetition interval (PRI) design. The imaging efficiency has been greatly improved because the new method avoids the complex azimuth resampling operation. Simulation experiments verify the effectiveness of the method.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14153725