Loading…

Adaptations to high-intensity interval training in skeletal muscle require NADPH oxidase 2

Reactive oxygen species (ROS) have been proposed as signaling molecules mediating exercise training adaptation, but the ROS source has remained unclear. This study aimed to investigate if increased NADPH oxidase (NOX)2-dependent activity during exercise is required for long-term high-intensity inter...

Full description

Saved in:
Bibliographic Details
Published in:Redox biology 2019-06, Vol.24, p.101188-101188, Article 101188
Main Authors: Henríquez-Olguín, Carlos, Renani, Leila Baghersad, Arab-Ceschia, Lyne, Raun, Steffen H, Bhatia, Aakash, Li, Zhencheng, Knudsen, Jonas R, Holmdahl, Rikard, Jensen, Thomas E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c559t-9495240bd4b792bed508ee81cc84417d5523c6addee24491e16ff13b67651e433
cites cdi_FETCH-LOGICAL-c559t-9495240bd4b792bed508ee81cc84417d5523c6addee24491e16ff13b67651e433
container_end_page 101188
container_issue
container_start_page 101188
container_title Redox biology
container_volume 24
creator Henríquez-Olguín, Carlos
Renani, Leila Baghersad
Arab-Ceschia, Lyne
Raun, Steffen H
Bhatia, Aakash
Li, Zhencheng
Knudsen, Jonas R
Holmdahl, Rikard
Jensen, Thomas E
description Reactive oxygen species (ROS) have been proposed as signaling molecules mediating exercise training adaptation, but the ROS source has remained unclear. This study aimed to investigate if increased NADPH oxidase (NOX)2-dependent activity during exercise is required for long-term high-intensity interval training (HIIT) in skeletal muscle using a mouse model lacking functional NOX2 complex due to absent p47phox (Ncf1) subunit expression (ncf1* mutation). HIIT was investigated after an acute bout of exercise and after a chronic intervention (3x/week for 6 weeks) in wild-type (WT) vs. NOX2 activity-deficient (ncf1*) mice. NOX2 activation during HIIT was measured using an electroporated genetically-encoded biosensor. Immunoblotting and single-fiber microscopy was performed to measure classical exercise-training responsive endpoints in skeletal muscle. A single bout of HIIT increased NOX2 activity measured as p47-roGFP oxidation immediately after exercise but not 1 h or 4 h after exercise. After a 6-week HIIT regimen, improvements in maximal running capacity and some muscle training-markers responded less to HIIT in the ncf1* mice compared to WT, including superoxide dismutase 2, catalase, hexokinase II, pyruvate dehydrogenase and protein markers of mitochondrial oxidative phosphorylation complexes. Strikingly, HIIT-training increased mitochondrial network area and decreased fragmentation in WT mice only. This study suggests that HIIT exercise increases NOX2 activity in skeletal muscle and shows that NOX2 activity is required for specific skeletal muscle adaptations to HIIT relating to antioxidant defense, glucose metabolism, and mitochondria.
doi_str_mv 10.1016/j.redox.2019.101188
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_41097e302fad4068bbe69b3ce4553073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_41097e302fad4068bbe69b3ce4553073</doaj_id><sourcerecordid>2206232442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-9495240bd4b792bed508ee81cc84417d5523c6addee24491e16ff13b67651e433</originalsourceid><addsrcrecordid>eNpVUk1P3DAUtKoiQJRfUKnKsZds_Z34UmlFaUFCLYf20ovlxC-7XrLxYjsU_n0dsiDWFz_NmzdvbA1CHwleEEzkl80igPWPC4qJmhBS1-_QKaWElZSR6v2b-gSdx7jB-dQ1pwQfoxOGlVBcklP0d2nNLpnk_BCL5Iu1W61LNyQYoktPxVSFB9MXKRg3uGGVkSLeQQ8pg9sxtj0UAe5HF6D4ufx2e1X4R2dNhIJ-QEed6SOc7-8z9Of75e-Lq_Lm14_ri-VN2QqhUqm4EpTjxvKmUrQBK3ANUJO2rTknlRWCslYaawEo54oAkV1HWCMrKQhwxs7Q9axrvdnoXXBbE560N04_Az6stAnJZaeaE6wqYJh2xnIs66YBqRrWAheC4WrSKmet-A92Y3OgtofucpWVaiy5zPyvMz93tmBbGPJH9Qdjh53BrfXKP2jJRTYwLfy8Fwj-foSY9NbFFvreDODHqCnFkrL8cJqpbKa2wccYoHtdQ7CeQqE3-jkUegqFnkORpz69dfg68xIB9h_I6LUJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206232442</pqid></control><display><type>article</type><title>Adaptations to high-intensity interval training in skeletal muscle require NADPH oxidase 2</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><creator>Henríquez-Olguín, Carlos ; Renani, Leila Baghersad ; Arab-Ceschia, Lyne ; Raun, Steffen H ; Bhatia, Aakash ; Li, Zhencheng ; Knudsen, Jonas R ; Holmdahl, Rikard ; Jensen, Thomas E</creator><creatorcontrib>Henríquez-Olguín, Carlos ; Renani, Leila Baghersad ; Arab-Ceschia, Lyne ; Raun, Steffen H ; Bhatia, Aakash ; Li, Zhencheng ; Knudsen, Jonas R ; Holmdahl, Rikard ; Jensen, Thomas E</creatorcontrib><description>Reactive oxygen species (ROS) have been proposed as signaling molecules mediating exercise training adaptation, but the ROS source has remained unclear. This study aimed to investigate if increased NADPH oxidase (NOX)2-dependent activity during exercise is required for long-term high-intensity interval training (HIIT) in skeletal muscle using a mouse model lacking functional NOX2 complex due to absent p47phox (Ncf1) subunit expression (ncf1* mutation). HIIT was investigated after an acute bout of exercise and after a chronic intervention (3x/week for 6 weeks) in wild-type (WT) vs. NOX2 activity-deficient (ncf1*) mice. NOX2 activation during HIIT was measured using an electroporated genetically-encoded biosensor. Immunoblotting and single-fiber microscopy was performed to measure classical exercise-training responsive endpoints in skeletal muscle. A single bout of HIIT increased NOX2 activity measured as p47-roGFP oxidation immediately after exercise but not 1 h or 4 h after exercise. After a 6-week HIIT regimen, improvements in maximal running capacity and some muscle training-markers responded less to HIIT in the ncf1* mice compared to WT, including superoxide dismutase 2, catalase, hexokinase II, pyruvate dehydrogenase and protein markers of mitochondrial oxidative phosphorylation complexes. Strikingly, HIIT-training increased mitochondrial network area and decreased fragmentation in WT mice only. This study suggests that HIIT exercise increases NOX2 activity in skeletal muscle and shows that NOX2 activity is required for specific skeletal muscle adaptations to HIIT relating to antioxidant defense, glucose metabolism, and mitochondria.</description><identifier>ISSN: 2213-2317</identifier><identifier>EISSN: 2213-2317</identifier><identifier>DOI: 10.1016/j.redox.2019.101188</identifier><identifier>PMID: 30959461</identifier><language>eng</language><publisher>Netherlands: Elsevier</publisher><subject>Adaptation, Physiological ; Animals ; High-Intensity Interval Training ; Humans ; Mice ; Mice, Knockout ; Mitochondria, Muscle - genetics ; Mitochondria, Muscle - metabolism ; Muscle, Skeletal - physiology ; Mutation ; NADPH Oxidase 2 - genetics ; NADPH Oxidase 2 - metabolism ; Oxidation-Reduction ; Phosphorylation ; Reactive Oxygen Species ; Research Paper</subject><ispartof>Redox biology, 2019-06, Vol.24, p.101188-101188, Article 101188</ispartof><rights>Copyright © 2019. Published by Elsevier B.V.</rights><rights>2019 Published by Elsevier B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-9495240bd4b792bed508ee81cc84417d5523c6addee24491e16ff13b67651e433</citedby><cites>FETCH-LOGICAL-c559t-9495240bd4b792bed508ee81cc84417d5523c6addee24491e16ff13b67651e433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454063/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454063/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30959461$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:141143486$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Henríquez-Olguín, Carlos</creatorcontrib><creatorcontrib>Renani, Leila Baghersad</creatorcontrib><creatorcontrib>Arab-Ceschia, Lyne</creatorcontrib><creatorcontrib>Raun, Steffen H</creatorcontrib><creatorcontrib>Bhatia, Aakash</creatorcontrib><creatorcontrib>Li, Zhencheng</creatorcontrib><creatorcontrib>Knudsen, Jonas R</creatorcontrib><creatorcontrib>Holmdahl, Rikard</creatorcontrib><creatorcontrib>Jensen, Thomas E</creatorcontrib><title>Adaptations to high-intensity interval training in skeletal muscle require NADPH oxidase 2</title><title>Redox biology</title><addtitle>Redox Biol</addtitle><description>Reactive oxygen species (ROS) have been proposed as signaling molecules mediating exercise training adaptation, but the ROS source has remained unclear. This study aimed to investigate if increased NADPH oxidase (NOX)2-dependent activity during exercise is required for long-term high-intensity interval training (HIIT) in skeletal muscle using a mouse model lacking functional NOX2 complex due to absent p47phox (Ncf1) subunit expression (ncf1* mutation). HIIT was investigated after an acute bout of exercise and after a chronic intervention (3x/week for 6 weeks) in wild-type (WT) vs. NOX2 activity-deficient (ncf1*) mice. NOX2 activation during HIIT was measured using an electroporated genetically-encoded biosensor. Immunoblotting and single-fiber microscopy was performed to measure classical exercise-training responsive endpoints in skeletal muscle. A single bout of HIIT increased NOX2 activity measured as p47-roGFP oxidation immediately after exercise but not 1 h or 4 h after exercise. After a 6-week HIIT regimen, improvements in maximal running capacity and some muscle training-markers responded less to HIIT in the ncf1* mice compared to WT, including superoxide dismutase 2, catalase, hexokinase II, pyruvate dehydrogenase and protein markers of mitochondrial oxidative phosphorylation complexes. Strikingly, HIIT-training increased mitochondrial network area and decreased fragmentation in WT mice only. This study suggests that HIIT exercise increases NOX2 activity in skeletal muscle and shows that NOX2 activity is required for specific skeletal muscle adaptations to HIIT relating to antioxidant defense, glucose metabolism, and mitochondria.</description><subject>Adaptation, Physiological</subject><subject>Animals</subject><subject>High-Intensity Interval Training</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria, Muscle - genetics</subject><subject>Mitochondria, Muscle - metabolism</subject><subject>Muscle, Skeletal - physiology</subject><subject>Mutation</subject><subject>NADPH Oxidase 2 - genetics</subject><subject>NADPH Oxidase 2 - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Phosphorylation</subject><subject>Reactive Oxygen Species</subject><subject>Research Paper</subject><issn>2213-2317</issn><issn>2213-2317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVUk1P3DAUtKoiQJRfUKnKsZds_Z34UmlFaUFCLYf20ovlxC-7XrLxYjsU_n0dsiDWFz_NmzdvbA1CHwleEEzkl80igPWPC4qJmhBS1-_QKaWElZSR6v2b-gSdx7jB-dQ1pwQfoxOGlVBcklP0d2nNLpnk_BCL5Iu1W61LNyQYoktPxVSFB9MXKRg3uGGVkSLeQQ8pg9sxtj0UAe5HF6D4ufx2e1X4R2dNhIJ-QEed6SOc7-8z9Of75e-Lq_Lm14_ri-VN2QqhUqm4EpTjxvKmUrQBK3ANUJO2rTknlRWCslYaawEo54oAkV1HWCMrKQhwxs7Q9axrvdnoXXBbE560N04_Az6stAnJZaeaE6wqYJh2xnIs66YBqRrWAheC4WrSKmet-A92Y3OgtofucpWVaiy5zPyvMz93tmBbGPJH9Qdjh53BrfXKP2jJRTYwLfy8Fwj-foSY9NbFFvreDODHqCnFkrL8cJqpbKa2wccYoHtdQ7CeQqE3-jkUegqFnkORpz69dfg68xIB9h_I6LUJ</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Henríquez-Olguín, Carlos</creator><creator>Renani, Leila Baghersad</creator><creator>Arab-Ceschia, Lyne</creator><creator>Raun, Steffen H</creator><creator>Bhatia, Aakash</creator><creator>Li, Zhencheng</creator><creator>Knudsen, Jonas R</creator><creator>Holmdahl, Rikard</creator><creator>Jensen, Thomas E</creator><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20190601</creationdate><title>Adaptations to high-intensity interval training in skeletal muscle require NADPH oxidase 2</title><author>Henríquez-Olguín, Carlos ; Renani, Leila Baghersad ; Arab-Ceschia, Lyne ; Raun, Steffen H ; Bhatia, Aakash ; Li, Zhencheng ; Knudsen, Jonas R ; Holmdahl, Rikard ; Jensen, Thomas E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-9495240bd4b792bed508ee81cc84417d5523c6addee24491e16ff13b67651e433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation, Physiological</topic><topic>Animals</topic><topic>High-Intensity Interval Training</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria, Muscle - genetics</topic><topic>Mitochondria, Muscle - metabolism</topic><topic>Muscle, Skeletal - physiology</topic><topic>Mutation</topic><topic>NADPH Oxidase 2 - genetics</topic><topic>NADPH Oxidase 2 - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Phosphorylation</topic><topic>Reactive Oxygen Species</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henríquez-Olguín, Carlos</creatorcontrib><creatorcontrib>Renani, Leila Baghersad</creatorcontrib><creatorcontrib>Arab-Ceschia, Lyne</creatorcontrib><creatorcontrib>Raun, Steffen H</creatorcontrib><creatorcontrib>Bhatia, Aakash</creatorcontrib><creatorcontrib>Li, Zhencheng</creatorcontrib><creatorcontrib>Knudsen, Jonas R</creatorcontrib><creatorcontrib>Holmdahl, Rikard</creatorcontrib><creatorcontrib>Jensen, Thomas E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Redox biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henríquez-Olguín, Carlos</au><au>Renani, Leila Baghersad</au><au>Arab-Ceschia, Lyne</au><au>Raun, Steffen H</au><au>Bhatia, Aakash</au><au>Li, Zhencheng</au><au>Knudsen, Jonas R</au><au>Holmdahl, Rikard</au><au>Jensen, Thomas E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptations to high-intensity interval training in skeletal muscle require NADPH oxidase 2</atitle><jtitle>Redox biology</jtitle><addtitle>Redox Biol</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>24</volume><spage>101188</spage><epage>101188</epage><pages>101188-101188</pages><artnum>101188</artnum><issn>2213-2317</issn><eissn>2213-2317</eissn><abstract>Reactive oxygen species (ROS) have been proposed as signaling molecules mediating exercise training adaptation, but the ROS source has remained unclear. This study aimed to investigate if increased NADPH oxidase (NOX)2-dependent activity during exercise is required for long-term high-intensity interval training (HIIT) in skeletal muscle using a mouse model lacking functional NOX2 complex due to absent p47phox (Ncf1) subunit expression (ncf1* mutation). HIIT was investigated after an acute bout of exercise and after a chronic intervention (3x/week for 6 weeks) in wild-type (WT) vs. NOX2 activity-deficient (ncf1*) mice. NOX2 activation during HIIT was measured using an electroporated genetically-encoded biosensor. Immunoblotting and single-fiber microscopy was performed to measure classical exercise-training responsive endpoints in skeletal muscle. A single bout of HIIT increased NOX2 activity measured as p47-roGFP oxidation immediately after exercise but not 1 h or 4 h after exercise. After a 6-week HIIT regimen, improvements in maximal running capacity and some muscle training-markers responded less to HIIT in the ncf1* mice compared to WT, including superoxide dismutase 2, catalase, hexokinase II, pyruvate dehydrogenase and protein markers of mitochondrial oxidative phosphorylation complexes. Strikingly, HIIT-training increased mitochondrial network area and decreased fragmentation in WT mice only. This study suggests that HIIT exercise increases NOX2 activity in skeletal muscle and shows that NOX2 activity is required for specific skeletal muscle adaptations to HIIT relating to antioxidant defense, glucose metabolism, and mitochondria.</abstract><cop>Netherlands</cop><pub>Elsevier</pub><pmid>30959461</pmid><doi>10.1016/j.redox.2019.101188</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2213-2317
ispartof Redox biology, 2019-06, Vol.24, p.101188-101188, Article 101188
issn 2213-2317
2213-2317
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_41097e302fad4068bbe69b3ce4553073
source Open Access: PubMed Central; ScienceDirect Journals
subjects Adaptation, Physiological
Animals
High-Intensity Interval Training
Humans
Mice
Mice, Knockout
Mitochondria, Muscle - genetics
Mitochondria, Muscle - metabolism
Muscle, Skeletal - physiology
Mutation
NADPH Oxidase 2 - genetics
NADPH Oxidase 2 - metabolism
Oxidation-Reduction
Phosphorylation
Reactive Oxygen Species
Research Paper
title Adaptations to high-intensity interval training in skeletal muscle require NADPH oxidase 2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptations%20to%20high-intensity%20interval%20training%20in%20skeletal%20muscle%20require%20NADPH%20oxidase%202&rft.jtitle=Redox%20biology&rft.au=Henr%C3%ADquez-Olgu%C3%ADn,%20Carlos&rft.date=2019-06-01&rft.volume=24&rft.spage=101188&rft.epage=101188&rft.pages=101188-101188&rft.artnum=101188&rft.issn=2213-2317&rft.eissn=2213-2317&rft_id=info:doi/10.1016/j.redox.2019.101188&rft_dat=%3Cproquest_doaj_%3E2206232442%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c559t-9495240bd4b792bed508ee81cc84417d5523c6addee24491e16ff13b67651e433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2206232442&rft_id=info:pmid/30959461&rfr_iscdi=true