Loading…

A review on deep learning aided pilot decontamination in massive MIMO

In multi-antenna systems, advanced techniques such as massive multiple-input multiple-output (MIMO), beamforming, and beam selection depend heavily on the accurate acquisition of the channel state. However, pilot contamination (PC) can be a major source of interference which degrades they are perfor...

Full description

Saved in:
Bibliographic Details
Published in:Cogent engineering 2024-12, Vol.11 (1)
Main Authors: Victor, Crallet M., Mvuma, Alloys N., Mrutu, Salehe I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In multi-antenna systems, advanced techniques such as massive multiple-input multiple-output (MIMO), beamforming, and beam selection depend heavily on the accurate acquisition of the channel state. However, pilot contamination (PC) can be a major source of interference which degrades they are performance. Moreover, the severity of PC increases as more pilots are reused between users in the wireless systems. Researchers have shown that PC can be mitigated by using deep learning (DL) approaches. Nevertheless, when minimizing PC, the examination that identifies the applications and factors that distinguish these DL approaches is still limited. This paper reviews these DL approaches and the improvements needed to enhance their performance. Simulation results confirm that DL networks that learn to predict the channels directly have superior performance under PC.
ISSN:2331-1916
2331-1916
DOI:10.1080/23311916.2024.2322822