Loading…

Combining affinity purification and mass spectrometry to define the network of the nuclear proteins interacting with the N-terminal region of FMRP

Fragile X-Syndrome (FXS) represents the most common inherited form of intellectual disability and the leading monogenic cause of Autism Spectrum Disorders. In most cases, this disease results from the absence of expression of the protein FMRP encoded by the FMR1 gene (Fragile X messenger ribonucleop...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in molecular biosciences 2022-09, Vol.9, p.954087-954087
Main Authors: Kieffer, Félicie, Hilal, Fahd, Gay, Anne-Sophie, Debayle, Delphine, Pronot, Marie, Poupon, Gwénola, Lacagne, Iliona, Bardoni, Barbara, Martin, Stéphane, Gwizdek, Carole
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c479t-51695dd8afd2fe4fb2b00e657c346fae7460f0380b7d6e24b51d825da7c44f733
cites cdi_FETCH-LOGICAL-c479t-51695dd8afd2fe4fb2b00e657c346fae7460f0380b7d6e24b51d825da7c44f733
container_end_page 954087
container_issue
container_start_page 954087
container_title Frontiers in molecular biosciences
container_volume 9
creator Kieffer, Félicie
Hilal, Fahd
Gay, Anne-Sophie
Debayle, Delphine
Pronot, Marie
Poupon, Gwénola
Lacagne, Iliona
Bardoni, Barbara
Martin, Stéphane
Gwizdek, Carole
description Fragile X-Syndrome (FXS) represents the most common inherited form of intellectual disability and the leading monogenic cause of Autism Spectrum Disorders. In most cases, this disease results from the absence of expression of the protein FMRP encoded by the FMR1 gene (Fragile X messenger ribonucleoprotein 1). FMRP is mainly defined as a cytoplasmic RNA-binding protein regulating the local translation of thousands of target mRNAs. Interestingly, FMRP is also able to shuttle between the nucleus and the cytoplasm. However, to date, its roles in the nucleus of mammalian neurons are just emerging. To broaden our insight into the contribution of nuclear FMRP in mammalian neuronal physiology, we identified here a nuclear interactome of the protein by combining subcellular fractionation of rat forebrains with pull‐ down affinity purification and mass spectrometry analysis. By this approach, we listed 55 candidate nuclear partners. This interactome includes known nuclear FMRP-binding proteins as Adar or Rbm14 as well as several novel candidates, notably Ddx41, Poldip3, or Hnrnpa3 that we further validated by target‐specific approaches. Through our approach, we identified factors involved in different steps of mRNA biogenesis, as transcription, splicing, editing or nuclear export, revealing a potential central regulatory function of FMRP in the biogenesis of its target mRNAs. Therefore, our work considerably enlarges the nuclear proteins interaction network of FMRP in mammalian neurons and lays the basis for exciting future mechanistic studies deepening the roles of nuclear FMRP in neuronal physiology and the etiology of the FXS.
doi_str_mv 10.3389/fmolb.2022.954087
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_41567188905949fe92005c17d4060778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_41567188905949fe92005c17d4060778</doaj_id><sourcerecordid>2725196021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-51695dd8afd2fe4fb2b00e657c346fae7460f0380b7d6e24b51d825da7c44f733</originalsourceid><addsrcrecordid>eNpdksluFDEQhlsIRKKQB-DmIwdm8O72BSmKyCINixBI3Cy3lxmHbnuwPYnmNXhiPNMRIpxcrvrrK1Xp77rXCC4J6eU7P6VxWGKI8VIyCnvxrDvFWPJF38sfz_-JT7rzUu4ghIhBIjh92Z0Qjolggpx2vy_TNIQY4hpo71tQ92C7y8EHo2tIEehowaRLAWXrTM1pcjXvQU3AuiZ3oG4ciK4-pPwTJD9_d2Z0OoNtTtWFWECI1WVt6mHKQ6ibo-rToiWnEPUIslsfRrX2q49fv7zqXng9Fnf--J51368-fLu8Waw-X99eXqwWhgpZFwxxyazttbfYO-oHPEDoOBOGUO61E5RDD0kPB2G5w3RgyPaYWS0MpV4Qctbdzlyb9J3a5jDpvFdJB3VMpLxWOtfQdlEUMS5QOyZkkkrvJIaQGSQshRwK0TfW-5m13Q2Ts8bFmvX4BPq0EsNGrdO9kowRCGkDvJ0Bm__abi5Wqt2wnUq1ZQjnGN-jJn_zOC-nXztXqppCMW4cdXRpVxQWmCHJIT5I0Sw1OZWSnf-LR1AdnKSOTlIHJ6nZSeQP9qS9sg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725196021</pqid></control><display><type>article</type><title>Combining affinity purification and mass spectrometry to define the network of the nuclear proteins interacting with the N-terminal region of FMRP</title><source>PubMed Central</source><creator>Kieffer, Félicie ; Hilal, Fahd ; Gay, Anne-Sophie ; Debayle, Delphine ; Pronot, Marie ; Poupon, Gwénola ; Lacagne, Iliona ; Bardoni, Barbara ; Martin, Stéphane ; Gwizdek, Carole</creator><creatorcontrib>Kieffer, Félicie ; Hilal, Fahd ; Gay, Anne-Sophie ; Debayle, Delphine ; Pronot, Marie ; Poupon, Gwénola ; Lacagne, Iliona ; Bardoni, Barbara ; Martin, Stéphane ; Gwizdek, Carole</creatorcontrib><description>Fragile X-Syndrome (FXS) represents the most common inherited form of intellectual disability and the leading monogenic cause of Autism Spectrum Disorders. In most cases, this disease results from the absence of expression of the protein FMRP encoded by the FMR1 gene (Fragile X messenger ribonucleoprotein 1). FMRP is mainly defined as a cytoplasmic RNA-binding protein regulating the local translation of thousands of target mRNAs. Interestingly, FMRP is also able to shuttle between the nucleus and the cytoplasm. However, to date, its roles in the nucleus of mammalian neurons are just emerging. To broaden our insight into the contribution of nuclear FMRP in mammalian neuronal physiology, we identified here a nuclear interactome of the protein by combining subcellular fractionation of rat forebrains with pull‐ down affinity purification and mass spectrometry analysis. By this approach, we listed 55 candidate nuclear partners. This interactome includes known nuclear FMRP-binding proteins as Adar or Rbm14 as well as several novel candidates, notably Ddx41, Poldip3, or Hnrnpa3 that we further validated by target‐specific approaches. Through our approach, we identified factors involved in different steps of mRNA biogenesis, as transcription, splicing, editing or nuclear export, revealing a potential central regulatory function of FMRP in the biogenesis of its target mRNAs. Therefore, our work considerably enlarges the nuclear proteins interaction network of FMRP in mammalian neurons and lays the basis for exciting future mechanistic studies deepening the roles of nuclear FMRP in neuronal physiology and the etiology of the FXS.</description><identifier>ISSN: 2296-889X</identifier><identifier>EISSN: 2296-889X</identifier><identifier>DOI: 10.3389/fmolb.2022.954087</identifier><identifier>PMID: 36237573</identifier><language>eng</language><publisher>Frontiers Media</publisher><subject>Cognitive science ; FMRP ; Life Sciences ; Molecular Biosciences ; mRNA metabolism ; nuclear fractionation ; nuclear protein network ; proteomics</subject><ispartof>Frontiers in molecular biosciences, 2022-09, Vol.9, p.954087-954087</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2022 Kieffer, Hilal, Gay, Debayle, Pronot, Poupon, Lacagne, Bardoni, Martin and Gwizdek. 2022 Kieffer, Hilal, Gay, Debayle, Pronot, Poupon, Lacagne, Bardoni, Martin and Gwizdek</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-51695dd8afd2fe4fb2b00e657c346fae7460f0380b7d6e24b51d825da7c44f733</citedby><cites>FETCH-LOGICAL-c479t-51695dd8afd2fe4fb2b00e657c346fae7460f0380b7d6e24b51d825da7c44f733</cites><orcidid>0000-0002-1007-5925 ; 0000-0001-6771-7645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553004/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553004/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://inserm.hal.science/inserm-03836622$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kieffer, Félicie</creatorcontrib><creatorcontrib>Hilal, Fahd</creatorcontrib><creatorcontrib>Gay, Anne-Sophie</creatorcontrib><creatorcontrib>Debayle, Delphine</creatorcontrib><creatorcontrib>Pronot, Marie</creatorcontrib><creatorcontrib>Poupon, Gwénola</creatorcontrib><creatorcontrib>Lacagne, Iliona</creatorcontrib><creatorcontrib>Bardoni, Barbara</creatorcontrib><creatorcontrib>Martin, Stéphane</creatorcontrib><creatorcontrib>Gwizdek, Carole</creatorcontrib><title>Combining affinity purification and mass spectrometry to define the network of the nuclear proteins interacting with the N-terminal region of FMRP</title><title>Frontiers in molecular biosciences</title><description>Fragile X-Syndrome (FXS) represents the most common inherited form of intellectual disability and the leading monogenic cause of Autism Spectrum Disorders. In most cases, this disease results from the absence of expression of the protein FMRP encoded by the FMR1 gene (Fragile X messenger ribonucleoprotein 1). FMRP is mainly defined as a cytoplasmic RNA-binding protein regulating the local translation of thousands of target mRNAs. Interestingly, FMRP is also able to shuttle between the nucleus and the cytoplasm. However, to date, its roles in the nucleus of mammalian neurons are just emerging. To broaden our insight into the contribution of nuclear FMRP in mammalian neuronal physiology, we identified here a nuclear interactome of the protein by combining subcellular fractionation of rat forebrains with pull‐ down affinity purification and mass spectrometry analysis. By this approach, we listed 55 candidate nuclear partners. This interactome includes known nuclear FMRP-binding proteins as Adar or Rbm14 as well as several novel candidates, notably Ddx41, Poldip3, or Hnrnpa3 that we further validated by target‐specific approaches. Through our approach, we identified factors involved in different steps of mRNA biogenesis, as transcription, splicing, editing or nuclear export, revealing a potential central regulatory function of FMRP in the biogenesis of its target mRNAs. Therefore, our work considerably enlarges the nuclear proteins interaction network of FMRP in mammalian neurons and lays the basis for exciting future mechanistic studies deepening the roles of nuclear FMRP in neuronal physiology and the etiology of the FXS.</description><subject>Cognitive science</subject><subject>FMRP</subject><subject>Life Sciences</subject><subject>Molecular Biosciences</subject><subject>mRNA metabolism</subject><subject>nuclear fractionation</subject><subject>nuclear protein network</subject><subject>proteomics</subject><issn>2296-889X</issn><issn>2296-889X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpdksluFDEQhlsIRKKQB-DmIwdm8O72BSmKyCINixBI3Cy3lxmHbnuwPYnmNXhiPNMRIpxcrvrrK1Xp77rXCC4J6eU7P6VxWGKI8VIyCnvxrDvFWPJF38sfz_-JT7rzUu4ghIhBIjh92Z0Qjolggpx2vy_TNIQY4hpo71tQ92C7y8EHo2tIEehowaRLAWXrTM1pcjXvQU3AuiZ3oG4ciK4-pPwTJD9_d2Z0OoNtTtWFWECI1WVt6mHKQ6ibo-rToiWnEPUIslsfRrX2q49fv7zqXng9Fnf--J51368-fLu8Waw-X99eXqwWhgpZFwxxyazttbfYO-oHPEDoOBOGUO61E5RDD0kPB2G5w3RgyPaYWS0MpV4Qctbdzlyb9J3a5jDpvFdJB3VMpLxWOtfQdlEUMS5QOyZkkkrvJIaQGSQshRwK0TfW-5m13Q2Ts8bFmvX4BPq0EsNGrdO9kowRCGkDvJ0Bm__abi5Wqt2wnUq1ZQjnGN-jJn_zOC-nXztXqppCMW4cdXRpVxQWmCHJIT5I0Sw1OZWSnf-LR1AdnKSOTlIHJ6nZSeQP9qS9sg</recordid><startdate>20220927</startdate><enddate>20220927</enddate><creator>Kieffer, Félicie</creator><creator>Hilal, Fahd</creator><creator>Gay, Anne-Sophie</creator><creator>Debayle, Delphine</creator><creator>Pronot, Marie</creator><creator>Poupon, Gwénola</creator><creator>Lacagne, Iliona</creator><creator>Bardoni, Barbara</creator><creator>Martin, Stéphane</creator><creator>Gwizdek, Carole</creator><general>Frontiers Media</general><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1007-5925</orcidid><orcidid>https://orcid.org/0000-0001-6771-7645</orcidid></search><sort><creationdate>20220927</creationdate><title>Combining affinity purification and mass spectrometry to define the network of the nuclear proteins interacting with the N-terminal region of FMRP</title><author>Kieffer, Félicie ; Hilal, Fahd ; Gay, Anne-Sophie ; Debayle, Delphine ; Pronot, Marie ; Poupon, Gwénola ; Lacagne, Iliona ; Bardoni, Barbara ; Martin, Stéphane ; Gwizdek, Carole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-51695dd8afd2fe4fb2b00e657c346fae7460f0380b7d6e24b51d825da7c44f733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cognitive science</topic><topic>FMRP</topic><topic>Life Sciences</topic><topic>Molecular Biosciences</topic><topic>mRNA metabolism</topic><topic>nuclear fractionation</topic><topic>nuclear protein network</topic><topic>proteomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kieffer, Félicie</creatorcontrib><creatorcontrib>Hilal, Fahd</creatorcontrib><creatorcontrib>Gay, Anne-Sophie</creatorcontrib><creatorcontrib>Debayle, Delphine</creatorcontrib><creatorcontrib>Pronot, Marie</creatorcontrib><creatorcontrib>Poupon, Gwénola</creatorcontrib><creatorcontrib>Lacagne, Iliona</creatorcontrib><creatorcontrib>Bardoni, Barbara</creatorcontrib><creatorcontrib>Martin, Stéphane</creatorcontrib><creatorcontrib>Gwizdek, Carole</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in molecular biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kieffer, Félicie</au><au>Hilal, Fahd</au><au>Gay, Anne-Sophie</au><au>Debayle, Delphine</au><au>Pronot, Marie</au><au>Poupon, Gwénola</au><au>Lacagne, Iliona</au><au>Bardoni, Barbara</au><au>Martin, Stéphane</au><au>Gwizdek, Carole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining affinity purification and mass spectrometry to define the network of the nuclear proteins interacting with the N-terminal region of FMRP</atitle><jtitle>Frontiers in molecular biosciences</jtitle><date>2022-09-27</date><risdate>2022</risdate><volume>9</volume><spage>954087</spage><epage>954087</epage><pages>954087-954087</pages><issn>2296-889X</issn><eissn>2296-889X</eissn><abstract>Fragile X-Syndrome (FXS) represents the most common inherited form of intellectual disability and the leading monogenic cause of Autism Spectrum Disorders. In most cases, this disease results from the absence of expression of the protein FMRP encoded by the FMR1 gene (Fragile X messenger ribonucleoprotein 1). FMRP is mainly defined as a cytoplasmic RNA-binding protein regulating the local translation of thousands of target mRNAs. Interestingly, FMRP is also able to shuttle between the nucleus and the cytoplasm. However, to date, its roles in the nucleus of mammalian neurons are just emerging. To broaden our insight into the contribution of nuclear FMRP in mammalian neuronal physiology, we identified here a nuclear interactome of the protein by combining subcellular fractionation of rat forebrains with pull‐ down affinity purification and mass spectrometry analysis. By this approach, we listed 55 candidate nuclear partners. This interactome includes known nuclear FMRP-binding proteins as Adar or Rbm14 as well as several novel candidates, notably Ddx41, Poldip3, or Hnrnpa3 that we further validated by target‐specific approaches. Through our approach, we identified factors involved in different steps of mRNA biogenesis, as transcription, splicing, editing or nuclear export, revealing a potential central regulatory function of FMRP in the biogenesis of its target mRNAs. Therefore, our work considerably enlarges the nuclear proteins interaction network of FMRP in mammalian neurons and lays the basis for exciting future mechanistic studies deepening the roles of nuclear FMRP in neuronal physiology and the etiology of the FXS.</abstract><pub>Frontiers Media</pub><pmid>36237573</pmid><doi>10.3389/fmolb.2022.954087</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1007-5925</orcidid><orcidid>https://orcid.org/0000-0001-6771-7645</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-889X
ispartof Frontiers in molecular biosciences, 2022-09, Vol.9, p.954087-954087
issn 2296-889X
2296-889X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_41567188905949fe92005c17d4060778
source PubMed Central
subjects Cognitive science
FMRP
Life Sciences
Molecular Biosciences
mRNA metabolism
nuclear fractionation
nuclear protein network
proteomics
title Combining affinity purification and mass spectrometry to define the network of the nuclear proteins interacting with the N-terminal region of FMRP
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20affinity%20purification%20and%20mass%20spectrometry%20to%20define%20the%20network%20of%20the%20nuclear%20proteins%20interacting%20with%20the%20N-terminal%20region%20of%20FMRP&rft.jtitle=Frontiers%20in%20molecular%20biosciences&rft.au=Kieffer,%20F%C3%A9licie&rft.date=2022-09-27&rft.volume=9&rft.spage=954087&rft.epage=954087&rft.pages=954087-954087&rft.issn=2296-889X&rft.eissn=2296-889X&rft_id=info:doi/10.3389/fmolb.2022.954087&rft_dat=%3Cproquest_doaj_%3E2725196021%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-51695dd8afd2fe4fb2b00e657c346fae7460f0380b7d6e24b51d825da7c44f733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2725196021&rft_id=info:pmid/36237573&rfr_iscdi=true