Loading…

Multi-Modal System for Walking Safety for the Visually Impaired: Multi-Object Detection and Natural Language Generation

This study introduces a system for visually impaired individuals in a walking environment. It combines object recognition using YOLOv5 and cautionary sentence generation with KoAlpaca. The system employs image data augmentation for diverse training data and GPT for natural language training. Further...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2024-09, Vol.14 (17), p.7643
Main Authors: Lee, Jekyung, Cha, Kyung-Ae, Lee, Miran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c252t-c21e7da9282ab6a1892db4c18c40937c71ce9c1a8d3ae4db02cc4c322e7ce7a43
container_end_page
container_issue 17
container_start_page 7643
container_title Applied sciences
container_volume 14
creator Lee, Jekyung
Cha, Kyung-Ae
Lee, Miran
description This study introduces a system for visually impaired individuals in a walking environment. It combines object recognition using YOLOv5 and cautionary sentence generation with KoAlpaca. The system employs image data augmentation for diverse training data and GPT for natural language training. Furthermore, the implementation of the system on a single board was followed by a comprehensive comparative analysis with existing studies. Moreover, a pilot test involving visually impaired and healthy individuals was conducted to validate the system’s practical applicability and adaptability in real-world walking environments. Our pilot test results indicated an average usability score of 4.05. Participants expressed some dissatisfaction with the notification conveying time and online implementation, but they highly praised the system’s object detection range and accuracy. The experiments demonstrated that using QLoRA enables more efficient training of larger models, which is associated with improved model performance. Our study makes a significant contribution to the literature because the proposed system enables real-time monitoring of various environmental conditions and objects in pedestrian environments using AI.
doi_str_mv 10.3390/app14177643
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_41677bb96572481490a99b854c639512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_41677bb96572481490a99b854c639512</doaj_id><sourcerecordid>3103867448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-c21e7da9282ab6a1892db4c18c40937c71ce9c1a8d3ae4db02cc4c322e7ce7a43</originalsourceid><addsrcrecordid>eNpNkUtLw0AQx4MoKLUnv8CCR6nuK9ldb1JfhWoPvo7LZDOpqWk2bjZIv72pFXEO8_zzm4FJkhNGz4Uw9ALalkmmVCbFXnLEqcomYqj3_-WHybjrVnQww4Rm9Cj5eujrWE0efAE1edp0Edek9IG8Qf1RNUvyBCXGzU8rviN5rboe6npDZusWqoDFJdkBFvkKXSTXGIdQ-YZAU5BHiH0YuHNolj0skdxhgwG28-PkoIS6w_FvHCUvtzfP0_vJfHE3m17NJ46nPA6eoSrAcM0hz4Bpw4tcOqadpEYop5hD4xjoQgDKIqfcOekE56gcKpBilMx23MLDyrahWkPYWA-V_Wn4sLQQYuVqtJJlSuW5yVLFpWbSUDAm16l0mTAp4wPrdMdqg__ssYt25fvQDOdbwajQmZJSD6qzncoF33UBy7-tjNrto-y_R4lv2ICFLA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103867448</pqid></control><display><type>article</type><title>Multi-Modal System for Walking Safety for the Visually Impaired: Multi-Object Detection and Natural Language Generation</title><source>Publicly Available Content Database</source><creator>Lee, Jekyung ; Cha, Kyung-Ae ; Lee, Miran</creator><creatorcontrib>Lee, Jekyung ; Cha, Kyung-Ae ; Lee, Miran</creatorcontrib><description>This study introduces a system for visually impaired individuals in a walking environment. It combines object recognition using YOLOv5 and cautionary sentence generation with KoAlpaca. The system employs image data augmentation for diverse training data and GPT for natural language training. Furthermore, the implementation of the system on a single board was followed by a comprehensive comparative analysis with existing studies. Moreover, a pilot test involving visually impaired and healthy individuals was conducted to validate the system’s practical applicability and adaptability in real-world walking environments. Our pilot test results indicated an average usability score of 4.05. Participants expressed some dissatisfaction with the notification conveying time and online implementation, but they highly praised the system’s object detection range and accuracy. The experiments demonstrated that using QLoRA enables more efficient training of larger models, which is associated with improved model performance. Our study makes a significant contribution to the literature because the proposed system enables real-time monitoring of various environmental conditions and objects in pedestrian environments using AI.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app14177643</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Augmented reality ; Classification ; Deep learning ; KoAlpaca ; Language ; Natural language ; natural language generation ; Neural networks ; object detection ; Orthopedic apparatus ; Real time ; Roads &amp; highways ; Smart devices ; Smartphones ; Vibration ; Visual impairment ; visually impaired ; walking assistance sentence ; YOLOv5</subject><ispartof>Applied sciences, 2024-09, Vol.14 (17), p.7643</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-c21e7da9282ab6a1892db4c18c40937c71ce9c1a8d3ae4db02cc4c322e7ce7a43</cites><orcidid>0009-0009-4061-7826 ; 0009-0001-1940-0210 ; 0000-0003-4851-5030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3103867448/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3103867448?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Lee, Jekyung</creatorcontrib><creatorcontrib>Cha, Kyung-Ae</creatorcontrib><creatorcontrib>Lee, Miran</creatorcontrib><title>Multi-Modal System for Walking Safety for the Visually Impaired: Multi-Object Detection and Natural Language Generation</title><title>Applied sciences</title><description>This study introduces a system for visually impaired individuals in a walking environment. It combines object recognition using YOLOv5 and cautionary sentence generation with KoAlpaca. The system employs image data augmentation for diverse training data and GPT for natural language training. Furthermore, the implementation of the system on a single board was followed by a comprehensive comparative analysis with existing studies. Moreover, a pilot test involving visually impaired and healthy individuals was conducted to validate the system’s practical applicability and adaptability in real-world walking environments. Our pilot test results indicated an average usability score of 4.05. Participants expressed some dissatisfaction with the notification conveying time and online implementation, but they highly praised the system’s object detection range and accuracy. The experiments demonstrated that using QLoRA enables more efficient training of larger models, which is associated with improved model performance. Our study makes a significant contribution to the literature because the proposed system enables real-time monitoring of various environmental conditions and objects in pedestrian environments using AI.</description><subject>Augmented reality</subject><subject>Classification</subject><subject>Deep learning</subject><subject>KoAlpaca</subject><subject>Language</subject><subject>Natural language</subject><subject>natural language generation</subject><subject>Neural networks</subject><subject>object detection</subject><subject>Orthopedic apparatus</subject><subject>Real time</subject><subject>Roads &amp; highways</subject><subject>Smart devices</subject><subject>Smartphones</subject><subject>Vibration</subject><subject>Visual impairment</subject><subject>visually impaired</subject><subject>walking assistance sentence</subject><subject>YOLOv5</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLw0AQx4MoKLUnv8CCR6nuK9ldb1JfhWoPvo7LZDOpqWk2bjZIv72pFXEO8_zzm4FJkhNGz4Uw9ALalkmmVCbFXnLEqcomYqj3_-WHybjrVnQww4Rm9Cj5eujrWE0efAE1edp0Edek9IG8Qf1RNUvyBCXGzU8rviN5rboe6npDZusWqoDFJdkBFvkKXSTXGIdQ-YZAU5BHiH0YuHNolj0skdxhgwG28-PkoIS6w_FvHCUvtzfP0_vJfHE3m17NJ46nPA6eoSrAcM0hz4Bpw4tcOqadpEYop5hD4xjoQgDKIqfcOekE56gcKpBilMx23MLDyrahWkPYWA-V_Wn4sLQQYuVqtJJlSuW5yVLFpWbSUDAm16l0mTAp4wPrdMdqg__ssYt25fvQDOdbwajQmZJSD6qzncoF33UBy7-tjNrto-y_R4lv2ICFLA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Lee, Jekyung</creator><creator>Cha, Kyung-Ae</creator><creator>Lee, Miran</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0009-4061-7826</orcidid><orcidid>https://orcid.org/0009-0001-1940-0210</orcidid><orcidid>https://orcid.org/0000-0003-4851-5030</orcidid></search><sort><creationdate>20240901</creationdate><title>Multi-Modal System for Walking Safety for the Visually Impaired: Multi-Object Detection and Natural Language Generation</title><author>Lee, Jekyung ; Cha, Kyung-Ae ; Lee, Miran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-c21e7da9282ab6a1892db4c18c40937c71ce9c1a8d3ae4db02cc4c322e7ce7a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Augmented reality</topic><topic>Classification</topic><topic>Deep learning</topic><topic>KoAlpaca</topic><topic>Language</topic><topic>Natural language</topic><topic>natural language generation</topic><topic>Neural networks</topic><topic>object detection</topic><topic>Orthopedic apparatus</topic><topic>Real time</topic><topic>Roads &amp; highways</topic><topic>Smart devices</topic><topic>Smartphones</topic><topic>Vibration</topic><topic>Visual impairment</topic><topic>visually impaired</topic><topic>walking assistance sentence</topic><topic>YOLOv5</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jekyung</creatorcontrib><creatorcontrib>Cha, Kyung-Ae</creatorcontrib><creatorcontrib>Lee, Miran</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jekyung</au><au>Cha, Kyung-Ae</au><au>Lee, Miran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Modal System for Walking Safety for the Visually Impaired: Multi-Object Detection and Natural Language Generation</atitle><jtitle>Applied sciences</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>14</volume><issue>17</issue><spage>7643</spage><pages>7643-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>This study introduces a system for visually impaired individuals in a walking environment. It combines object recognition using YOLOv5 and cautionary sentence generation with KoAlpaca. The system employs image data augmentation for diverse training data and GPT for natural language training. Furthermore, the implementation of the system on a single board was followed by a comprehensive comparative analysis with existing studies. Moreover, a pilot test involving visually impaired and healthy individuals was conducted to validate the system’s practical applicability and adaptability in real-world walking environments. Our pilot test results indicated an average usability score of 4.05. Participants expressed some dissatisfaction with the notification conveying time and online implementation, but they highly praised the system’s object detection range and accuracy. The experiments demonstrated that using QLoRA enables more efficient training of larger models, which is associated with improved model performance. Our study makes a significant contribution to the literature because the proposed system enables real-time monitoring of various environmental conditions and objects in pedestrian environments using AI.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app14177643</doi><orcidid>https://orcid.org/0009-0009-4061-7826</orcidid><orcidid>https://orcid.org/0009-0001-1940-0210</orcidid><orcidid>https://orcid.org/0000-0003-4851-5030</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2024-09, Vol.14 (17), p.7643
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_41677bb96572481490a99b854c639512
source Publicly Available Content Database
subjects Augmented reality
Classification
Deep learning
KoAlpaca
Language
Natural language
natural language generation
Neural networks
object detection
Orthopedic apparatus
Real time
Roads & highways
Smart devices
Smartphones
Vibration
Visual impairment
visually impaired
walking assistance sentence
YOLOv5
title Multi-Modal System for Walking Safety for the Visually Impaired: Multi-Object Detection and Natural Language Generation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Modal%20System%20for%20Walking%20Safety%20for%20the%20Visually%20Impaired:%20Multi-Object%20Detection%20and%20Natural%20Language%20Generation&rft.jtitle=Applied%20sciences&rft.au=Lee,%20Jekyung&rft.date=2024-09-01&rft.volume=14&rft.issue=17&rft.spage=7643&rft.pages=7643-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app14177643&rft_dat=%3Cproquest_doaj_%3E3103867448%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-c21e7da9282ab6a1892db4c18c40937c71ce9c1a8d3ae4db02cc4c322e7ce7a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3103867448&rft_id=info:pmid/&rfr_iscdi=true