Loading…
Multi-Modal System for Walking Safety for the Visually Impaired: Multi-Object Detection and Natural Language Generation
This study introduces a system for visually impaired individuals in a walking environment. It combines object recognition using YOLOv5 and cautionary sentence generation with KoAlpaca. The system employs image data augmentation for diverse training data and GPT for natural language training. Further...
Saved in:
Published in: | Applied sciences 2024-09, Vol.14 (17), p.7643 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c252t-c21e7da9282ab6a1892db4c18c40937c71ce9c1a8d3ae4db02cc4c322e7ce7a43 |
container_end_page | |
container_issue | 17 |
container_start_page | 7643 |
container_title | Applied sciences |
container_volume | 14 |
creator | Lee, Jekyung Cha, Kyung-Ae Lee, Miran |
description | This study introduces a system for visually impaired individuals in a walking environment. It combines object recognition using YOLOv5 and cautionary sentence generation with KoAlpaca. The system employs image data augmentation for diverse training data and GPT for natural language training. Furthermore, the implementation of the system on a single board was followed by a comprehensive comparative analysis with existing studies. Moreover, a pilot test involving visually impaired and healthy individuals was conducted to validate the system’s practical applicability and adaptability in real-world walking environments. Our pilot test results indicated an average usability score of 4.05. Participants expressed some dissatisfaction with the notification conveying time and online implementation, but they highly praised the system’s object detection range and accuracy. The experiments demonstrated that using QLoRA enables more efficient training of larger models, which is associated with improved model performance. Our study makes a significant contribution to the literature because the proposed system enables real-time monitoring of various environmental conditions and objects in pedestrian environments using AI. |
doi_str_mv | 10.3390/app14177643 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_41677bb96572481490a99b854c639512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_41677bb96572481490a99b854c639512</doaj_id><sourcerecordid>3103867448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-c21e7da9282ab6a1892db4c18c40937c71ce9c1a8d3ae4db02cc4c322e7ce7a43</originalsourceid><addsrcrecordid>eNpNkUtLw0AQx4MoKLUnv8CCR6nuK9ldb1JfhWoPvo7LZDOpqWk2bjZIv72pFXEO8_zzm4FJkhNGz4Uw9ALalkmmVCbFXnLEqcomYqj3_-WHybjrVnQww4Rm9Cj5eujrWE0efAE1edp0Edek9IG8Qf1RNUvyBCXGzU8rviN5rboe6npDZusWqoDFJdkBFvkKXSTXGIdQ-YZAU5BHiH0YuHNolj0skdxhgwG28-PkoIS6w_FvHCUvtzfP0_vJfHE3m17NJ46nPA6eoSrAcM0hz4Bpw4tcOqadpEYop5hD4xjoQgDKIqfcOekE56gcKpBilMx23MLDyrahWkPYWA-V_Wn4sLQQYuVqtJJlSuW5yVLFpWbSUDAm16l0mTAp4wPrdMdqg__ssYt25fvQDOdbwajQmZJSD6qzncoF33UBy7-tjNrto-y_R4lv2ICFLA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103867448</pqid></control><display><type>article</type><title>Multi-Modal System for Walking Safety for the Visually Impaired: Multi-Object Detection and Natural Language Generation</title><source>Publicly Available Content Database</source><creator>Lee, Jekyung ; Cha, Kyung-Ae ; Lee, Miran</creator><creatorcontrib>Lee, Jekyung ; Cha, Kyung-Ae ; Lee, Miran</creatorcontrib><description>This study introduces a system for visually impaired individuals in a walking environment. It combines object recognition using YOLOv5 and cautionary sentence generation with KoAlpaca. The system employs image data augmentation for diverse training data and GPT for natural language training. Furthermore, the implementation of the system on a single board was followed by a comprehensive comparative analysis with existing studies. Moreover, a pilot test involving visually impaired and healthy individuals was conducted to validate the system’s practical applicability and adaptability in real-world walking environments. Our pilot test results indicated an average usability score of 4.05. Participants expressed some dissatisfaction with the notification conveying time and online implementation, but they highly praised the system’s object detection range and accuracy. The experiments demonstrated that using QLoRA enables more efficient training of larger models, which is associated with improved model performance. Our study makes a significant contribution to the literature because the proposed system enables real-time monitoring of various environmental conditions and objects in pedestrian environments using AI.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app14177643</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Augmented reality ; Classification ; Deep learning ; KoAlpaca ; Language ; Natural language ; natural language generation ; Neural networks ; object detection ; Orthopedic apparatus ; Real time ; Roads & highways ; Smart devices ; Smartphones ; Vibration ; Visual impairment ; visually impaired ; walking assistance sentence ; YOLOv5</subject><ispartof>Applied sciences, 2024-09, Vol.14 (17), p.7643</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-c21e7da9282ab6a1892db4c18c40937c71ce9c1a8d3ae4db02cc4c322e7ce7a43</cites><orcidid>0009-0009-4061-7826 ; 0009-0001-1940-0210 ; 0000-0003-4851-5030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3103867448/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3103867448?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Lee, Jekyung</creatorcontrib><creatorcontrib>Cha, Kyung-Ae</creatorcontrib><creatorcontrib>Lee, Miran</creatorcontrib><title>Multi-Modal System for Walking Safety for the Visually Impaired: Multi-Object Detection and Natural Language Generation</title><title>Applied sciences</title><description>This study introduces a system for visually impaired individuals in a walking environment. It combines object recognition using YOLOv5 and cautionary sentence generation with KoAlpaca. The system employs image data augmentation for diverse training data and GPT for natural language training. Furthermore, the implementation of the system on a single board was followed by a comprehensive comparative analysis with existing studies. Moreover, a pilot test involving visually impaired and healthy individuals was conducted to validate the system’s practical applicability and adaptability in real-world walking environments. Our pilot test results indicated an average usability score of 4.05. Participants expressed some dissatisfaction with the notification conveying time and online implementation, but they highly praised the system’s object detection range and accuracy. The experiments demonstrated that using QLoRA enables more efficient training of larger models, which is associated with improved model performance. Our study makes a significant contribution to the literature because the proposed system enables real-time monitoring of various environmental conditions and objects in pedestrian environments using AI.</description><subject>Augmented reality</subject><subject>Classification</subject><subject>Deep learning</subject><subject>KoAlpaca</subject><subject>Language</subject><subject>Natural language</subject><subject>natural language generation</subject><subject>Neural networks</subject><subject>object detection</subject><subject>Orthopedic apparatus</subject><subject>Real time</subject><subject>Roads & highways</subject><subject>Smart devices</subject><subject>Smartphones</subject><subject>Vibration</subject><subject>Visual impairment</subject><subject>visually impaired</subject><subject>walking assistance sentence</subject><subject>YOLOv5</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLw0AQx4MoKLUnv8CCR6nuK9ldb1JfhWoPvo7LZDOpqWk2bjZIv72pFXEO8_zzm4FJkhNGz4Uw9ALalkmmVCbFXnLEqcomYqj3_-WHybjrVnQww4Rm9Cj5eujrWE0efAE1edp0Edek9IG8Qf1RNUvyBCXGzU8rviN5rboe6npDZusWqoDFJdkBFvkKXSTXGIdQ-YZAU5BHiH0YuHNolj0skdxhgwG28-PkoIS6w_FvHCUvtzfP0_vJfHE3m17NJ46nPA6eoSrAcM0hz4Bpw4tcOqadpEYop5hD4xjoQgDKIqfcOekE56gcKpBilMx23MLDyrahWkPYWA-V_Wn4sLQQYuVqtJJlSuW5yVLFpWbSUDAm16l0mTAp4wPrdMdqg__ssYt25fvQDOdbwajQmZJSD6qzncoF33UBy7-tjNrto-y_R4lv2ICFLA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Lee, Jekyung</creator><creator>Cha, Kyung-Ae</creator><creator>Lee, Miran</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0009-4061-7826</orcidid><orcidid>https://orcid.org/0009-0001-1940-0210</orcidid><orcidid>https://orcid.org/0000-0003-4851-5030</orcidid></search><sort><creationdate>20240901</creationdate><title>Multi-Modal System for Walking Safety for the Visually Impaired: Multi-Object Detection and Natural Language Generation</title><author>Lee, Jekyung ; Cha, Kyung-Ae ; Lee, Miran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-c21e7da9282ab6a1892db4c18c40937c71ce9c1a8d3ae4db02cc4c322e7ce7a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Augmented reality</topic><topic>Classification</topic><topic>Deep learning</topic><topic>KoAlpaca</topic><topic>Language</topic><topic>Natural language</topic><topic>natural language generation</topic><topic>Neural networks</topic><topic>object detection</topic><topic>Orthopedic apparatus</topic><topic>Real time</topic><topic>Roads & highways</topic><topic>Smart devices</topic><topic>Smartphones</topic><topic>Vibration</topic><topic>Visual impairment</topic><topic>visually impaired</topic><topic>walking assistance sentence</topic><topic>YOLOv5</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jekyung</creatorcontrib><creatorcontrib>Cha, Kyung-Ae</creatorcontrib><creatorcontrib>Lee, Miran</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jekyung</au><au>Cha, Kyung-Ae</au><au>Lee, Miran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Modal System for Walking Safety for the Visually Impaired: Multi-Object Detection and Natural Language Generation</atitle><jtitle>Applied sciences</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>14</volume><issue>17</issue><spage>7643</spage><pages>7643-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>This study introduces a system for visually impaired individuals in a walking environment. It combines object recognition using YOLOv5 and cautionary sentence generation with KoAlpaca. The system employs image data augmentation for diverse training data and GPT for natural language training. Furthermore, the implementation of the system on a single board was followed by a comprehensive comparative analysis with existing studies. Moreover, a pilot test involving visually impaired and healthy individuals was conducted to validate the system’s practical applicability and adaptability in real-world walking environments. Our pilot test results indicated an average usability score of 4.05. Participants expressed some dissatisfaction with the notification conveying time and online implementation, but they highly praised the system’s object detection range and accuracy. The experiments demonstrated that using QLoRA enables more efficient training of larger models, which is associated with improved model performance. Our study makes a significant contribution to the literature because the proposed system enables real-time monitoring of various environmental conditions and objects in pedestrian environments using AI.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app14177643</doi><orcidid>https://orcid.org/0009-0009-4061-7826</orcidid><orcidid>https://orcid.org/0009-0001-1940-0210</orcidid><orcidid>https://orcid.org/0000-0003-4851-5030</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2024-09, Vol.14 (17), p.7643 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_41677bb96572481490a99b854c639512 |
source | Publicly Available Content Database |
subjects | Augmented reality Classification Deep learning KoAlpaca Language Natural language natural language generation Neural networks object detection Orthopedic apparatus Real time Roads & highways Smart devices Smartphones Vibration Visual impairment visually impaired walking assistance sentence YOLOv5 |
title | Multi-Modal System for Walking Safety for the Visually Impaired: Multi-Object Detection and Natural Language Generation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Modal%20System%20for%20Walking%20Safety%20for%20the%20Visually%20Impaired:%20Multi-Object%20Detection%20and%20Natural%20Language%20Generation&rft.jtitle=Applied%20sciences&rft.au=Lee,%20Jekyung&rft.date=2024-09-01&rft.volume=14&rft.issue=17&rft.spage=7643&rft.pages=7643-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app14177643&rft_dat=%3Cproquest_doaj_%3E3103867448%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-c21e7da9282ab6a1892db4c18c40937c71ce9c1a8d3ae4db02cc4c322e7ce7a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3103867448&rft_id=info:pmid/&rfr_iscdi=true |