Loading…

An Optimal Phase Arrangement of Distribution Transformers under Risk Assessment

This paper presents a phase arrangement procedure for distribution transformers to improve system unbalance and voltage profile of distribution systems, while considering the location and uncertainties of the wind turbine (WT) and photovoltaics (PV). Based on historical data, the Monte Carlo method...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2020-11, Vol.13 (21), p.5852
Main Authors: Tu, Chia-Sheng, Yang, Chung-Yuen, Tsai, Ming-Tang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a phase arrangement procedure for distribution transformers to improve system unbalance and voltage profile of distribution systems, while considering the location and uncertainties of the wind turbine (WT) and photovoltaics (PV). Based on historical data, the Monte Carlo method is used to calculate the power generation value-at-risk (VAR) of WTs/PVs installed under a given level of confidence. The main target of this paper is to reduce the line loss and unbalance factor during 24-hour intervals. Assessing the various confidence levels of risk, a feasible particle swarm optimization (FPSO) is proposed to solve the optimal location of WTs/PVs installed and transformer load arrangement. A three-phase power flow with equivalent current injection (ECI) is analyzed to demonstrate the operating efficiency of the FPSO in a Taipower feeder. Simulation results will support the planner in the proper location of WTs/PVs installed to reduce system losses and maintain the voltage profile. They can also provide more risk information for handing uncertainties when the renewable energy is connected to the distribution system.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13215852