Loading…
A new ChatGPT-empowered, easy-to-use machine learning paradigm for environmental science
The quantity and complexity of environmental data show exponential growth in recent years. High-quality big data analysis is critical for performing a sophisticated characterization of the complex network of environmental pollution. Machine learning (ML) has been employed as a powerful tool for deco...
Saved in:
Published in: | Eco-Environment & Health 2024-06, Vol.3 (2), p.131-136 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c522t-d0bc451b5c1f02dc0d54de34d71b8187145aafea76be4e633b0fca2ce60509bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c522t-d0bc451b5c1f02dc0d54de34d71b8187145aafea76be4e633b0fca2ce60509bb3 |
container_end_page | 136 |
container_issue | 2 |
container_start_page | 131 |
container_title | Eco-Environment & Health |
container_volume | 3 |
creator | An, Haoyuan Li, Xiangyu Huang, Yuming Wang, Weichao Wu, Yuehan Liu, Lin Ling, Weibo Li, Wei Zhao, Hanzhu Lu, Dawei Liu, Qian Jiang, Guibin |
description | The quantity and complexity of environmental data show exponential growth in recent years. High-quality big data analysis is critical for performing a sophisticated characterization of the complex network of environmental pollution. Machine learning (ML) has been employed as a powerful tool for decoupling the complexities of environmental big data based on its remarkable fitting ability. Yet, due to the knowledge gap across different subjects, ML concepts and algorithms have not been well-popularized among researchers in environmental sustainability. In this context, we introduce a new research paradigm—“ChatGPT + ML + Environment”, providing an unprecedented chance for environmental researchers to reduce the difficulty of using ML models. For instance, each step involved in applying ML models to environmental sustainability, including data preparation, model selection and construction, model training and evaluation, and hyper-parameter optimization, can be easily performed with guidance from ChatGPT. We also discuss the challenges and limitations of using this research paradigm in the field of environmental sustainability. Furthermore, we highlight the importance of “secondary training” for future application of “ChatGPT + ML + Environment”.
[Display omitted]
•A new paradigm of “ChatGPT + Machine learning (ML) + Environment” is presented.•The novelty and knowledge gaps of ML for decoupling the complexity of environmental big data are discussed.•The new paradigm guided by GPT reduces the threshold of using Machine Learning in environmental research.•The importance of “secondary training” for using “ChatGPT + ML + Environment” in the future is highlighted. |
doi_str_mv | 10.1016/j.eehl.2024.01.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4174ff87602c4661964b83ffaab9a98c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2772985024000073</els_id><doaj_id>oai_doaj_org_article_4174ff87602c4661964b83ffaab9a98c</doaj_id><sourcerecordid>3043073388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-d0bc451b5c1f02dc0d54de34d71b8187145aafea76be4e633b0fca2ce60509bb3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpH-CAcuRAlvFHYkdCQtUKSqVKcCgSN2vsTHa9SuzFzm7Vf0-WXar2wsmW_c4z9jxF8ZbBggFrPm4WROthwYHLBbAFQPOiOOdK8arVNbx8sj8rLnPeAABvuVBcvS7OhG6EZkqcF7-uykD35XKN0_WPu4rGbbynRN2HkjA_VFOsdpnKEd3aByoHwhR8WJVbTNj51Vj2MZUU9j7FMFKYcCiz8xQcvSle9ThkujytF8XPr1_ult-q2-_XN8ur28rVnE9VB9bJmtnasR5456CrZUdCdopZzbRiskbsCVVjSVIjhIXeIXfUQA2tteKiuDlyu4gbs01-xPRgInrz9yCmlcE0eTeQkUzJvteqAe5k07C2kVaLvke0LbbazazPR9Z2Z0fq3PyhhMMz6POb4NdmFfeGMeBMcz4T3p8IKf7eUZ7M6LOjYcBAcZeNAClACaH1HOXHqEsx50T9Yx8G5qDYbMxBsTkoNsDMrHguevf0hY8l_4TOgU_HAM0z33tK5uSj84ncNA_F_4__ByrEuJ4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3043073388</pqid></control><display><type>article</type><title>A new ChatGPT-empowered, easy-to-use machine learning paradigm for environmental science</title><source>ScienceDirect Journals</source><source>PubMed Central</source><creator>An, Haoyuan ; Li, Xiangyu ; Huang, Yuming ; Wang, Weichao ; Wu, Yuehan ; Liu, Lin ; Ling, Weibo ; Li, Wei ; Zhao, Hanzhu ; Lu, Dawei ; Liu, Qian ; Jiang, Guibin</creator><creatorcontrib>An, Haoyuan ; Li, Xiangyu ; Huang, Yuming ; Wang, Weichao ; Wu, Yuehan ; Liu, Lin ; Ling, Weibo ; Li, Wei ; Zhao, Hanzhu ; Lu, Dawei ; Liu, Qian ; Jiang, Guibin</creatorcontrib><description>The quantity and complexity of environmental data show exponential growth in recent years. High-quality big data analysis is critical for performing a sophisticated characterization of the complex network of environmental pollution. Machine learning (ML) has been employed as a powerful tool for decoupling the complexities of environmental big data based on its remarkable fitting ability. Yet, due to the knowledge gap across different subjects, ML concepts and algorithms have not been well-popularized among researchers in environmental sustainability. In this context, we introduce a new research paradigm—“ChatGPT + ML + Environment”, providing an unprecedented chance for environmental researchers to reduce the difficulty of using ML models. For instance, each step involved in applying ML models to environmental sustainability, including data preparation, model selection and construction, model training and evaluation, and hyper-parameter optimization, can be easily performed with guidance from ChatGPT. We also discuss the challenges and limitations of using this research paradigm in the field of environmental sustainability. Furthermore, we highlight the importance of “secondary training” for future application of “ChatGPT + ML + Environment”.
[Display omitted]
•A new paradigm of “ChatGPT + Machine learning (ML) + Environment” is presented.•The novelty and knowledge gaps of ML for decoupling the complexity of environmental big data are discussed.•The new paradigm guided by GPT reduces the threshold of using Machine Learning in environmental research.•The importance of “secondary training” for using “ChatGPT + ML + Environment” in the future is highlighted.</description><identifier>ISSN: 2772-9850</identifier><identifier>EISSN: 2772-9850</identifier><identifier>DOI: 10.1016/j.eehl.2024.01.006</identifier><identifier>PMID: 38638173</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>ChatGPT ; Environmental application ; Machine learning ; Secondary training</subject><ispartof>Eco-Environment & Health, 2024-06, Vol.3 (2), p.131-136</ispartof><rights>2024 The Authors</rights><rights>2024 The Authors.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-d0bc451b5c1f02dc0d54de34d71b8187145aafea76be4e633b0fca2ce60509bb3</citedby><cites>FETCH-LOGICAL-c522t-d0bc451b5c1f02dc0d54de34d71b8187145aafea76be4e633b0fca2ce60509bb3</cites><orcidid>0000-0002-8128-6367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021822/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2772985024000073$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,3536,27905,27906,45761,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38638173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Haoyuan</creatorcontrib><creatorcontrib>Li, Xiangyu</creatorcontrib><creatorcontrib>Huang, Yuming</creatorcontrib><creatorcontrib>Wang, Weichao</creatorcontrib><creatorcontrib>Wu, Yuehan</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Ling, Weibo</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhao, Hanzhu</creatorcontrib><creatorcontrib>Lu, Dawei</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Jiang, Guibin</creatorcontrib><title>A new ChatGPT-empowered, easy-to-use machine learning paradigm for environmental science</title><title>Eco-Environment & Health</title><addtitle>Eco Environ Health</addtitle><description>The quantity and complexity of environmental data show exponential growth in recent years. High-quality big data analysis is critical for performing a sophisticated characterization of the complex network of environmental pollution. Machine learning (ML) has been employed as a powerful tool for decoupling the complexities of environmental big data based on its remarkable fitting ability. Yet, due to the knowledge gap across different subjects, ML concepts and algorithms have not been well-popularized among researchers in environmental sustainability. In this context, we introduce a new research paradigm—“ChatGPT + ML + Environment”, providing an unprecedented chance for environmental researchers to reduce the difficulty of using ML models. For instance, each step involved in applying ML models to environmental sustainability, including data preparation, model selection and construction, model training and evaluation, and hyper-parameter optimization, can be easily performed with guidance from ChatGPT. We also discuss the challenges and limitations of using this research paradigm in the field of environmental sustainability. Furthermore, we highlight the importance of “secondary training” for future application of “ChatGPT + ML + Environment”.
[Display omitted]
•A new paradigm of “ChatGPT + Machine learning (ML) + Environment” is presented.•The novelty and knowledge gaps of ML for decoupling the complexity of environmental big data are discussed.•The new paradigm guided by GPT reduces the threshold of using Machine Learning in environmental research.•The importance of “secondary training” for using “ChatGPT + ML + Environment” in the future is highlighted.</description><subject>ChatGPT</subject><subject>Environmental application</subject><subject>Machine learning</subject><subject>Secondary training</subject><issn>2772-9850</issn><issn>2772-9850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEolXpH-CAcuRAlvFHYkdCQtUKSqVKcCgSN2vsTHa9SuzFzm7Vf0-WXar2wsmW_c4z9jxF8ZbBggFrPm4WROthwYHLBbAFQPOiOOdK8arVNbx8sj8rLnPeAABvuVBcvS7OhG6EZkqcF7-uykD35XKN0_WPu4rGbbynRN2HkjA_VFOsdpnKEd3aByoHwhR8WJVbTNj51Vj2MZUU9j7FMFKYcCiz8xQcvSle9ThkujytF8XPr1_ult-q2-_XN8ur28rVnE9VB9bJmtnasR5456CrZUdCdopZzbRiskbsCVVjSVIjhIXeIXfUQA2tteKiuDlyu4gbs01-xPRgInrz9yCmlcE0eTeQkUzJvteqAe5k07C2kVaLvke0LbbazazPR9Z2Z0fq3PyhhMMz6POb4NdmFfeGMeBMcz4T3p8IKf7eUZ7M6LOjYcBAcZeNAClACaH1HOXHqEsx50T9Yx8G5qDYbMxBsTkoNsDMrHguevf0hY8l_4TOgU_HAM0z33tK5uSj84ncNA_F_4__ByrEuJ4</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>An, Haoyuan</creator><creator>Li, Xiangyu</creator><creator>Huang, Yuming</creator><creator>Wang, Weichao</creator><creator>Wu, Yuehan</creator><creator>Liu, Lin</creator><creator>Ling, Weibo</creator><creator>Li, Wei</creator><creator>Zhao, Hanzhu</creator><creator>Lu, Dawei</creator><creator>Liu, Qian</creator><creator>Jiang, Guibin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8128-6367</orcidid></search><sort><creationdate>20240601</creationdate><title>A new ChatGPT-empowered, easy-to-use machine learning paradigm for environmental science</title><author>An, Haoyuan ; Li, Xiangyu ; Huang, Yuming ; Wang, Weichao ; Wu, Yuehan ; Liu, Lin ; Ling, Weibo ; Li, Wei ; Zhao, Hanzhu ; Lu, Dawei ; Liu, Qian ; Jiang, Guibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-d0bc451b5c1f02dc0d54de34d71b8187145aafea76be4e633b0fca2ce60509bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ChatGPT</topic><topic>Environmental application</topic><topic>Machine learning</topic><topic>Secondary training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Haoyuan</creatorcontrib><creatorcontrib>Li, Xiangyu</creatorcontrib><creatorcontrib>Huang, Yuming</creatorcontrib><creatorcontrib>Wang, Weichao</creatorcontrib><creatorcontrib>Wu, Yuehan</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Ling, Weibo</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhao, Hanzhu</creatorcontrib><creatorcontrib>Lu, Dawei</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Jiang, Guibin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Eco-Environment & Health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Haoyuan</au><au>Li, Xiangyu</au><au>Huang, Yuming</au><au>Wang, Weichao</au><au>Wu, Yuehan</au><au>Liu, Lin</au><au>Ling, Weibo</au><au>Li, Wei</au><au>Zhao, Hanzhu</au><au>Lu, Dawei</au><au>Liu, Qian</au><au>Jiang, Guibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new ChatGPT-empowered, easy-to-use machine learning paradigm for environmental science</atitle><jtitle>Eco-Environment & Health</jtitle><addtitle>Eco Environ Health</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>3</volume><issue>2</issue><spage>131</spage><epage>136</epage><pages>131-136</pages><issn>2772-9850</issn><eissn>2772-9850</eissn><abstract>The quantity and complexity of environmental data show exponential growth in recent years. High-quality big data analysis is critical for performing a sophisticated characterization of the complex network of environmental pollution. Machine learning (ML) has been employed as a powerful tool for decoupling the complexities of environmental big data based on its remarkable fitting ability. Yet, due to the knowledge gap across different subjects, ML concepts and algorithms have not been well-popularized among researchers in environmental sustainability. In this context, we introduce a new research paradigm—“ChatGPT + ML + Environment”, providing an unprecedented chance for environmental researchers to reduce the difficulty of using ML models. For instance, each step involved in applying ML models to environmental sustainability, including data preparation, model selection and construction, model training and evaluation, and hyper-parameter optimization, can be easily performed with guidance from ChatGPT. We also discuss the challenges and limitations of using this research paradigm in the field of environmental sustainability. Furthermore, we highlight the importance of “secondary training” for future application of “ChatGPT + ML + Environment”.
[Display omitted]
•A new paradigm of “ChatGPT + Machine learning (ML) + Environment” is presented.•The novelty and knowledge gaps of ML for decoupling the complexity of environmental big data are discussed.•The new paradigm guided by GPT reduces the threshold of using Machine Learning in environmental research.•The importance of “secondary training” for using “ChatGPT + ML + Environment” in the future is highlighted.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38638173</pmid><doi>10.1016/j.eehl.2024.01.006</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8128-6367</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2772-9850 |
ispartof | Eco-Environment & Health, 2024-06, Vol.3 (2), p.131-136 |
issn | 2772-9850 2772-9850 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4174ff87602c4661964b83ffaab9a98c |
source | ScienceDirect Journals; PubMed Central |
subjects | ChatGPT Environmental application Machine learning Secondary training |
title | A new ChatGPT-empowered, easy-to-use machine learning paradigm for environmental science |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20ChatGPT-empowered,%20easy-to-use%20machine%20learning%20paradigm%20for%20environmental%20science&rft.jtitle=Eco-Environment%20&%20Health&rft.au=An,%20Haoyuan&rft.date=2024-06-01&rft.volume=3&rft.issue=2&rft.spage=131&rft.epage=136&rft.pages=131-136&rft.issn=2772-9850&rft.eissn=2772-9850&rft_id=info:doi/10.1016/j.eehl.2024.01.006&rft_dat=%3Cproquest_doaj_%3E3043073388%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-d0bc451b5c1f02dc0d54de34d71b8187145aafea76be4e633b0fca2ce60509bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3043073388&rft_id=info:pmid/38638173&rfr_iscdi=true |