Loading…

A new ChatGPT-empowered, easy-to-use machine learning paradigm for environmental science

The quantity and complexity of environmental data show exponential growth in recent years. High-quality big data analysis is critical for performing a sophisticated characterization of the complex network of environmental pollution. Machine learning (ML) has been employed as a powerful tool for deco...

Full description

Saved in:
Bibliographic Details
Published in:Eco-Environment & Health 2024-06, Vol.3 (2), p.131-136
Main Authors: An, Haoyuan, Li, Xiangyu, Huang, Yuming, Wang, Weichao, Wu, Yuehan, Liu, Lin, Ling, Weibo, Li, Wei, Zhao, Hanzhu, Lu, Dawei, Liu, Qian, Jiang, Guibin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c522t-d0bc451b5c1f02dc0d54de34d71b8187145aafea76be4e633b0fca2ce60509bb3
cites cdi_FETCH-LOGICAL-c522t-d0bc451b5c1f02dc0d54de34d71b8187145aafea76be4e633b0fca2ce60509bb3
container_end_page 136
container_issue 2
container_start_page 131
container_title Eco-Environment & Health
container_volume 3
creator An, Haoyuan
Li, Xiangyu
Huang, Yuming
Wang, Weichao
Wu, Yuehan
Liu, Lin
Ling, Weibo
Li, Wei
Zhao, Hanzhu
Lu, Dawei
Liu, Qian
Jiang, Guibin
description The quantity and complexity of environmental data show exponential growth in recent years. High-quality big data analysis is critical for performing a sophisticated characterization of the complex network of environmental pollution. Machine learning (ML) has been employed as a powerful tool for decoupling the complexities of environmental big data based on its remarkable fitting ability. Yet, due to the knowledge gap across different subjects, ML concepts and algorithms have not been well-popularized among researchers in environmental sustainability. In this context, we introduce a new research paradigm—“ChatGPT + ML + Environment”, providing an unprecedented chance for environmental researchers to reduce the difficulty of using ML models. For instance, each step involved in applying ML models to environmental sustainability, including data preparation, model selection and construction, model training and evaluation, and hyper-parameter optimization, can be easily performed with guidance from ChatGPT. We also discuss the challenges and limitations of using this research paradigm in the field of environmental sustainability. Furthermore, we highlight the importance of “secondary training” for future application of “ChatGPT + ML + Environment”. [Display omitted] •A new paradigm of “ChatGPT + Machine learning (ML) + Environment” is presented.•The novelty and knowledge gaps of ML for decoupling the complexity of environmental big data are discussed.•The new paradigm guided by GPT reduces the threshold of using Machine Learning in environmental research.•The importance of “secondary training” for using “ChatGPT + ML + Environment” in the future is highlighted.
doi_str_mv 10.1016/j.eehl.2024.01.006
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4174ff87602c4661964b83ffaab9a98c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2772985024000073</els_id><doaj_id>oai_doaj_org_article_4174ff87602c4661964b83ffaab9a98c</doaj_id><sourcerecordid>3043073388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-d0bc451b5c1f02dc0d54de34d71b8187145aafea76be4e633b0fca2ce60509bb3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpH-CAcuRAlvFHYkdCQtUKSqVKcCgSN2vsTHa9SuzFzm7Vf0-WXar2wsmW_c4z9jxF8ZbBggFrPm4WROthwYHLBbAFQPOiOOdK8arVNbx8sj8rLnPeAABvuVBcvS7OhG6EZkqcF7-uykD35XKN0_WPu4rGbbynRN2HkjA_VFOsdpnKEd3aByoHwhR8WJVbTNj51Vj2MZUU9j7FMFKYcCiz8xQcvSle9ThkujytF8XPr1_ult-q2-_XN8ur28rVnE9VB9bJmtnasR5456CrZUdCdopZzbRiskbsCVVjSVIjhIXeIXfUQA2tteKiuDlyu4gbs01-xPRgInrz9yCmlcE0eTeQkUzJvteqAe5k07C2kVaLvke0LbbazazPR9Z2Z0fq3PyhhMMz6POb4NdmFfeGMeBMcz4T3p8IKf7eUZ7M6LOjYcBAcZeNAClACaH1HOXHqEsx50T9Yx8G5qDYbMxBsTkoNsDMrHguevf0hY8l_4TOgU_HAM0z33tK5uSj84ncNA_F_4__ByrEuJ4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3043073388</pqid></control><display><type>article</type><title>A new ChatGPT-empowered, easy-to-use machine learning paradigm for environmental science</title><source>ScienceDirect Journals</source><source>PubMed Central</source><creator>An, Haoyuan ; Li, Xiangyu ; Huang, Yuming ; Wang, Weichao ; Wu, Yuehan ; Liu, Lin ; Ling, Weibo ; Li, Wei ; Zhao, Hanzhu ; Lu, Dawei ; Liu, Qian ; Jiang, Guibin</creator><creatorcontrib>An, Haoyuan ; Li, Xiangyu ; Huang, Yuming ; Wang, Weichao ; Wu, Yuehan ; Liu, Lin ; Ling, Weibo ; Li, Wei ; Zhao, Hanzhu ; Lu, Dawei ; Liu, Qian ; Jiang, Guibin</creatorcontrib><description>The quantity and complexity of environmental data show exponential growth in recent years. High-quality big data analysis is critical for performing a sophisticated characterization of the complex network of environmental pollution. Machine learning (ML) has been employed as a powerful tool for decoupling the complexities of environmental big data based on its remarkable fitting ability. Yet, due to the knowledge gap across different subjects, ML concepts and algorithms have not been well-popularized among researchers in environmental sustainability. In this context, we introduce a new research paradigm—“ChatGPT + ML + Environment”, providing an unprecedented chance for environmental researchers to reduce the difficulty of using ML models. For instance, each step involved in applying ML models to environmental sustainability, including data preparation, model selection and construction, model training and evaluation, and hyper-parameter optimization, can be easily performed with guidance from ChatGPT. We also discuss the challenges and limitations of using this research paradigm in the field of environmental sustainability. Furthermore, we highlight the importance of “secondary training” for future application of “ChatGPT + ML + Environment”. [Display omitted] •A new paradigm of “ChatGPT + Machine learning (ML) + Environment” is presented.•The novelty and knowledge gaps of ML for decoupling the complexity of environmental big data are discussed.•The new paradigm guided by GPT reduces the threshold of using Machine Learning in environmental research.•The importance of “secondary training” for using “ChatGPT + ML + Environment” in the future is highlighted.</description><identifier>ISSN: 2772-9850</identifier><identifier>EISSN: 2772-9850</identifier><identifier>DOI: 10.1016/j.eehl.2024.01.006</identifier><identifier>PMID: 38638173</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>ChatGPT ; Environmental application ; Machine learning ; Secondary training</subject><ispartof>Eco-Environment &amp; Health, 2024-06, Vol.3 (2), p.131-136</ispartof><rights>2024 The Authors</rights><rights>2024 The Authors.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-d0bc451b5c1f02dc0d54de34d71b8187145aafea76be4e633b0fca2ce60509bb3</citedby><cites>FETCH-LOGICAL-c522t-d0bc451b5c1f02dc0d54de34d71b8187145aafea76be4e633b0fca2ce60509bb3</cites><orcidid>0000-0002-8128-6367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021822/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2772985024000073$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,3536,27905,27906,45761,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38638173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Haoyuan</creatorcontrib><creatorcontrib>Li, Xiangyu</creatorcontrib><creatorcontrib>Huang, Yuming</creatorcontrib><creatorcontrib>Wang, Weichao</creatorcontrib><creatorcontrib>Wu, Yuehan</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Ling, Weibo</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhao, Hanzhu</creatorcontrib><creatorcontrib>Lu, Dawei</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Jiang, Guibin</creatorcontrib><title>A new ChatGPT-empowered, easy-to-use machine learning paradigm for environmental science</title><title>Eco-Environment &amp; Health</title><addtitle>Eco Environ Health</addtitle><description>The quantity and complexity of environmental data show exponential growth in recent years. High-quality big data analysis is critical for performing a sophisticated characterization of the complex network of environmental pollution. Machine learning (ML) has been employed as a powerful tool for decoupling the complexities of environmental big data based on its remarkable fitting ability. Yet, due to the knowledge gap across different subjects, ML concepts and algorithms have not been well-popularized among researchers in environmental sustainability. In this context, we introduce a new research paradigm—“ChatGPT + ML + Environment”, providing an unprecedented chance for environmental researchers to reduce the difficulty of using ML models. For instance, each step involved in applying ML models to environmental sustainability, including data preparation, model selection and construction, model training and evaluation, and hyper-parameter optimization, can be easily performed with guidance from ChatGPT. We also discuss the challenges and limitations of using this research paradigm in the field of environmental sustainability. Furthermore, we highlight the importance of “secondary training” for future application of “ChatGPT + ML + Environment”. [Display omitted] •A new paradigm of “ChatGPT + Machine learning (ML) + Environment” is presented.•The novelty and knowledge gaps of ML for decoupling the complexity of environmental big data are discussed.•The new paradigm guided by GPT reduces the threshold of using Machine Learning in environmental research.•The importance of “secondary training” for using “ChatGPT + ML + Environment” in the future is highlighted.</description><subject>ChatGPT</subject><subject>Environmental application</subject><subject>Machine learning</subject><subject>Secondary training</subject><issn>2772-9850</issn><issn>2772-9850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEolXpH-CAcuRAlvFHYkdCQtUKSqVKcCgSN2vsTHa9SuzFzm7Vf0-WXar2wsmW_c4z9jxF8ZbBggFrPm4WROthwYHLBbAFQPOiOOdK8arVNbx8sj8rLnPeAABvuVBcvS7OhG6EZkqcF7-uykD35XKN0_WPu4rGbbynRN2HkjA_VFOsdpnKEd3aByoHwhR8WJVbTNj51Vj2MZUU9j7FMFKYcCiz8xQcvSle9ThkujytF8XPr1_ult-q2-_XN8ur28rVnE9VB9bJmtnasR5456CrZUdCdopZzbRiskbsCVVjSVIjhIXeIXfUQA2tteKiuDlyu4gbs01-xPRgInrz9yCmlcE0eTeQkUzJvteqAe5k07C2kVaLvke0LbbazazPR9Z2Z0fq3PyhhMMz6POb4NdmFfeGMeBMcz4T3p8IKf7eUZ7M6LOjYcBAcZeNAClACaH1HOXHqEsx50T9Yx8G5qDYbMxBsTkoNsDMrHguevf0hY8l_4TOgU_HAM0z33tK5uSj84ncNA_F_4__ByrEuJ4</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>An, Haoyuan</creator><creator>Li, Xiangyu</creator><creator>Huang, Yuming</creator><creator>Wang, Weichao</creator><creator>Wu, Yuehan</creator><creator>Liu, Lin</creator><creator>Ling, Weibo</creator><creator>Li, Wei</creator><creator>Zhao, Hanzhu</creator><creator>Lu, Dawei</creator><creator>Liu, Qian</creator><creator>Jiang, Guibin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8128-6367</orcidid></search><sort><creationdate>20240601</creationdate><title>A new ChatGPT-empowered, easy-to-use machine learning paradigm for environmental science</title><author>An, Haoyuan ; Li, Xiangyu ; Huang, Yuming ; Wang, Weichao ; Wu, Yuehan ; Liu, Lin ; Ling, Weibo ; Li, Wei ; Zhao, Hanzhu ; Lu, Dawei ; Liu, Qian ; Jiang, Guibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-d0bc451b5c1f02dc0d54de34d71b8187145aafea76be4e633b0fca2ce60509bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ChatGPT</topic><topic>Environmental application</topic><topic>Machine learning</topic><topic>Secondary training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Haoyuan</creatorcontrib><creatorcontrib>Li, Xiangyu</creatorcontrib><creatorcontrib>Huang, Yuming</creatorcontrib><creatorcontrib>Wang, Weichao</creatorcontrib><creatorcontrib>Wu, Yuehan</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Ling, Weibo</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhao, Hanzhu</creatorcontrib><creatorcontrib>Lu, Dawei</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Jiang, Guibin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Eco-Environment &amp; Health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Haoyuan</au><au>Li, Xiangyu</au><au>Huang, Yuming</au><au>Wang, Weichao</au><au>Wu, Yuehan</au><au>Liu, Lin</au><au>Ling, Weibo</au><au>Li, Wei</au><au>Zhao, Hanzhu</au><au>Lu, Dawei</au><au>Liu, Qian</au><au>Jiang, Guibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new ChatGPT-empowered, easy-to-use machine learning paradigm for environmental science</atitle><jtitle>Eco-Environment &amp; Health</jtitle><addtitle>Eco Environ Health</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>3</volume><issue>2</issue><spage>131</spage><epage>136</epage><pages>131-136</pages><issn>2772-9850</issn><eissn>2772-9850</eissn><abstract>The quantity and complexity of environmental data show exponential growth in recent years. High-quality big data analysis is critical for performing a sophisticated characterization of the complex network of environmental pollution. Machine learning (ML) has been employed as a powerful tool for decoupling the complexities of environmental big data based on its remarkable fitting ability. Yet, due to the knowledge gap across different subjects, ML concepts and algorithms have not been well-popularized among researchers in environmental sustainability. In this context, we introduce a new research paradigm—“ChatGPT + ML + Environment”, providing an unprecedented chance for environmental researchers to reduce the difficulty of using ML models. For instance, each step involved in applying ML models to environmental sustainability, including data preparation, model selection and construction, model training and evaluation, and hyper-parameter optimization, can be easily performed with guidance from ChatGPT. We also discuss the challenges and limitations of using this research paradigm in the field of environmental sustainability. Furthermore, we highlight the importance of “secondary training” for future application of “ChatGPT + ML + Environment”. [Display omitted] •A new paradigm of “ChatGPT + Machine learning (ML) + Environment” is presented.•The novelty and knowledge gaps of ML for decoupling the complexity of environmental big data are discussed.•The new paradigm guided by GPT reduces the threshold of using Machine Learning in environmental research.•The importance of “secondary training” for using “ChatGPT + ML + Environment” in the future is highlighted.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38638173</pmid><doi>10.1016/j.eehl.2024.01.006</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8128-6367</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2772-9850
ispartof Eco-Environment & Health, 2024-06, Vol.3 (2), p.131-136
issn 2772-9850
2772-9850
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4174ff87602c4661964b83ffaab9a98c
source ScienceDirect Journals; PubMed Central
subjects ChatGPT
Environmental application
Machine learning
Secondary training
title A new ChatGPT-empowered, easy-to-use machine learning paradigm for environmental science
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20ChatGPT-empowered,%20easy-to-use%20machine%20learning%20paradigm%20for%20environmental%20science&rft.jtitle=Eco-Environment%20&%20Health&rft.au=An,%20Haoyuan&rft.date=2024-06-01&rft.volume=3&rft.issue=2&rft.spage=131&rft.epage=136&rft.pages=131-136&rft.issn=2772-9850&rft.eissn=2772-9850&rft_id=info:doi/10.1016/j.eehl.2024.01.006&rft_dat=%3Cproquest_doaj_%3E3043073388%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-d0bc451b5c1f02dc0d54de34d71b8187145aafea76be4e633b0fca2ce60509bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3043073388&rft_id=info:pmid/38638173&rfr_iscdi=true