Loading…
Artificial Intelligence for Image-Based Breast Cancer Risk Prediction Using Attention
Accurate prediction of individual breast cancer risk paves the way for personalised prevention and early detection. The incorporation of genetic information and breast density has been shown to improve predictions for existing models, but detailed image-based features are yet to be included despite...
Saved in:
Published in: | Tomography (Ann Arbor) 2023-11, Vol.9 (6), p.2103-2115 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c477t-33d3dad76f5186ad53c686bc359f2fa10bf14f75402278022614b2ac0ed849623 |
---|---|
cites | cdi_FETCH-LOGICAL-c477t-33d3dad76f5186ad53c686bc359f2fa10bf14f75402278022614b2ac0ed849623 |
container_end_page | 2115 |
container_issue | 6 |
container_start_page | 2103 |
container_title | Tomography (Ann Arbor) |
container_volume | 9 |
creator | Romanov, Stepan Howell, Sacha Harkness, Elaine Bydder, Megan Evans, D Gareth Squires, Steven Fergie, Martin Astley, Sue |
description | Accurate prediction of individual breast cancer risk paves the way for personalised prevention and early detection. The incorporation of genetic information and breast density has been shown to improve predictions for existing models, but detailed image-based features are yet to be included despite correlating with risk. Complex information can be extracted from mammograms using deep-learning algorithms, however, this is a challenging area of research, partly due to the lack of data within the field, and partly due to the computational burden. We propose an attention-based Multiple Instance Learning (MIL) model that can make accurate, short-term risk predictions from mammograms taken prior to the detection of cancer at full resolution. Current screen-detected cancers are mixed in with priors during model development to promote the detection of features associated with risk specifically and features associated with cancer formation, in addition to alleviating data scarcity issues. MAI-risk achieves an AUC of 0.747 [0.711, 0.783] in cancer-free screening mammograms of women who went on to develop a screen-detected or interval cancer between 5 and 55 months, outperforming both IBIS (AUC 0.594 [0.557, 0.633]) and VAS (AUC 0.649 [0.614, 0.683]) alone when accounting for established clinical risk factors. |
doi_str_mv | 10.3390/tomography9060165 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4198fe48becf41f9bd916dfe91a7755f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779344607</galeid><doaj_id>oai_doaj_org_article_4198fe48becf41f9bd916dfe91a7755f</doaj_id><sourcerecordid>A779344607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-33d3dad76f5186ad53c686bc359f2fa10bf14f75402278022614b2ac0ed849623</originalsourceid><addsrcrecordid>eNptUU1v1DAQjRCIVqU_gAuKxIVLih1_xcftqsBKlUCIlbhZE3scXDbxYnsP_fd42VKBQLb8MX7veWZe07yk5IoxTd6WOMcpwf7bvSaSUCmeNOc9U7qjTH99-sf5rLnM-Y4Q0pO-TvW8OWMDZYxIfd5sV6kEH2yAXbtZCu52YcLFYutjajczTNhdQ0bXXieEXNo11MfUfg75e_spoQu2hLi02xyWqV2Vgsvx_qJ55mGX8fJhv2i2726-rD90tx_fb9ar285ypUrHmGMOnJJe0EGCE8zKQY6WCe17D5SMnnKvBK-Jq6EukvKxB0vQDVzLnl00m5Oui3Bn9inMkO5NhGB-BWKaDNT67A4Np3rwyIcRrefU69FpKp1HTUEpIXzVenPS2qf444C5mDlkWxsCC8ZDNr0mQtQ2i-O3r0_QCapyWHwsCewRblZKaca5JKqirv6DqsPhHGxc0Ica_4tATwSbYs4J_WNFlJij5-Yfzyvn1UPWh3FG98j47TD7Cd2Mp_g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2905516552</pqid></control><display><type>article</type><title>Artificial Intelligence for Image-Based Breast Cancer Risk Prediction Using Attention</title><source>PubMed Central (Open Access)</source><source>EZB Electronic Journals Library</source><creator>Romanov, Stepan ; Howell, Sacha ; Harkness, Elaine ; Bydder, Megan ; Evans, D Gareth ; Squires, Steven ; Fergie, Martin ; Astley, Sue</creator><creatorcontrib>Romanov, Stepan ; Howell, Sacha ; Harkness, Elaine ; Bydder, Megan ; Evans, D Gareth ; Squires, Steven ; Fergie, Martin ; Astley, Sue</creatorcontrib><description>Accurate prediction of individual breast cancer risk paves the way for personalised prevention and early detection. The incorporation of genetic information and breast density has been shown to improve predictions for existing models, but detailed image-based features are yet to be included despite correlating with risk. Complex information can be extracted from mammograms using deep-learning algorithms, however, this is a challenging area of research, partly due to the lack of data within the field, and partly due to the computational burden. We propose an attention-based Multiple Instance Learning (MIL) model that can make accurate, short-term risk predictions from mammograms taken prior to the detection of cancer at full resolution. Current screen-detected cancers are mixed in with priors during model development to promote the detection of features associated with risk specifically and features associated with cancer formation, in addition to alleviating data scarcity issues. MAI-risk achieves an AUC of 0.747 [0.711, 0.783] in cancer-free screening mammograms of women who went on to develop a screen-detected or interval cancer between 5 and 55 months, outperforming both IBIS (AUC 0.594 [0.557, 0.633]) and VAS (AUC 0.649 [0.614, 0.683]) alone when accounting for established clinical risk factors.</description><identifier>ISSN: 2379-139X</identifier><identifier>ISSN: 2379-1381</identifier><identifier>EISSN: 2379-139X</identifier><identifier>DOI: 10.3390/tomography9060165</identifier><identifier>PMID: 38133069</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Artificial intelligence ; attention ; Breast cancer ; Cancer ; Data mining ; deep learning ; Diagnosis ; Health aspects ; Mammography ; multiple instance learning ; Risk factors ; risk prediction</subject><ispartof>Tomography (Ann Arbor), 2023-11, Vol.9 (6), p.2103-2115</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-33d3dad76f5186ad53c686bc359f2fa10bf14f75402278022614b2ac0ed849623</citedby><cites>FETCH-LOGICAL-c477t-33d3dad76f5186ad53c686bc359f2fa10bf14f75402278022614b2ac0ed849623</cites><orcidid>0000-0002-9531-6109 ; 0000-0002-8482-5784 ; 0000-0002-5395-0427 ; 0000-0001-8141-6515 ; 0000-0001-6625-7739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38133069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Romanov, Stepan</creatorcontrib><creatorcontrib>Howell, Sacha</creatorcontrib><creatorcontrib>Harkness, Elaine</creatorcontrib><creatorcontrib>Bydder, Megan</creatorcontrib><creatorcontrib>Evans, D Gareth</creatorcontrib><creatorcontrib>Squires, Steven</creatorcontrib><creatorcontrib>Fergie, Martin</creatorcontrib><creatorcontrib>Astley, Sue</creatorcontrib><title>Artificial Intelligence for Image-Based Breast Cancer Risk Prediction Using Attention</title><title>Tomography (Ann Arbor)</title><addtitle>Tomography</addtitle><description>Accurate prediction of individual breast cancer risk paves the way for personalised prevention and early detection. The incorporation of genetic information and breast density has been shown to improve predictions for existing models, but detailed image-based features are yet to be included despite correlating with risk. Complex information can be extracted from mammograms using deep-learning algorithms, however, this is a challenging area of research, partly due to the lack of data within the field, and partly due to the computational burden. We propose an attention-based Multiple Instance Learning (MIL) model that can make accurate, short-term risk predictions from mammograms taken prior to the detection of cancer at full resolution. Current screen-detected cancers are mixed in with priors during model development to promote the detection of features associated with risk specifically and features associated with cancer formation, in addition to alleviating data scarcity issues. MAI-risk achieves an AUC of 0.747 [0.711, 0.783] in cancer-free screening mammograms of women who went on to develop a screen-detected or interval cancer between 5 and 55 months, outperforming both IBIS (AUC 0.594 [0.557, 0.633]) and VAS (AUC 0.649 [0.614, 0.683]) alone when accounting for established clinical risk factors.</description><subject>Artificial intelligence</subject><subject>attention</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Data mining</subject><subject>deep learning</subject><subject>Diagnosis</subject><subject>Health aspects</subject><subject>Mammography</subject><subject>multiple instance learning</subject><subject>Risk factors</subject><subject>risk prediction</subject><issn>2379-139X</issn><issn>2379-1381</issn><issn>2379-139X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptUU1v1DAQjRCIVqU_gAuKxIVLih1_xcftqsBKlUCIlbhZE3scXDbxYnsP_fd42VKBQLb8MX7veWZe07yk5IoxTd6WOMcpwf7bvSaSUCmeNOc9U7qjTH99-sf5rLnM-Y4Q0pO-TvW8OWMDZYxIfd5sV6kEH2yAXbtZCu52YcLFYutjajczTNhdQ0bXXieEXNo11MfUfg75e_spoQu2hLi02xyWqV2Vgsvx_qJ55mGX8fJhv2i2726-rD90tx_fb9ar285ypUrHmGMOnJJe0EGCE8zKQY6WCe17D5SMnnKvBK-Jq6EukvKxB0vQDVzLnl00m5Oui3Bn9inMkO5NhGB-BWKaDNT67A4Np3rwyIcRrefU69FpKp1HTUEpIXzVenPS2qf444C5mDlkWxsCC8ZDNr0mQtQ2i-O3r0_QCapyWHwsCewRblZKaca5JKqirv6DqsPhHGxc0Ica_4tATwSbYs4J_WNFlJij5-Yfzyvn1UPWh3FG98j47TD7Cd2Mp_g</recordid><startdate>20231124</startdate><enddate>20231124</enddate><creator>Romanov, Stepan</creator><creator>Howell, Sacha</creator><creator>Harkness, Elaine</creator><creator>Bydder, Megan</creator><creator>Evans, D Gareth</creator><creator>Squires, Steven</creator><creator>Fergie, Martin</creator><creator>Astley, Sue</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9531-6109</orcidid><orcidid>https://orcid.org/0000-0002-8482-5784</orcidid><orcidid>https://orcid.org/0000-0002-5395-0427</orcidid><orcidid>https://orcid.org/0000-0001-8141-6515</orcidid><orcidid>https://orcid.org/0000-0001-6625-7739</orcidid></search><sort><creationdate>20231124</creationdate><title>Artificial Intelligence for Image-Based Breast Cancer Risk Prediction Using Attention</title><author>Romanov, Stepan ; Howell, Sacha ; Harkness, Elaine ; Bydder, Megan ; Evans, D Gareth ; Squires, Steven ; Fergie, Martin ; Astley, Sue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-33d3dad76f5186ad53c686bc359f2fa10bf14f75402278022614b2ac0ed849623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>attention</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Data mining</topic><topic>deep learning</topic><topic>Diagnosis</topic><topic>Health aspects</topic><topic>Mammography</topic><topic>multiple instance learning</topic><topic>Risk factors</topic><topic>risk prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romanov, Stepan</creatorcontrib><creatorcontrib>Howell, Sacha</creatorcontrib><creatorcontrib>Harkness, Elaine</creatorcontrib><creatorcontrib>Bydder, Megan</creatorcontrib><creatorcontrib>Evans, D Gareth</creatorcontrib><creatorcontrib>Squires, Steven</creatorcontrib><creatorcontrib>Fergie, Martin</creatorcontrib><creatorcontrib>Astley, Sue</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Tomography (Ann Arbor)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romanov, Stepan</au><au>Howell, Sacha</au><au>Harkness, Elaine</au><au>Bydder, Megan</au><au>Evans, D Gareth</au><au>Squires, Steven</au><au>Fergie, Martin</au><au>Astley, Sue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence for Image-Based Breast Cancer Risk Prediction Using Attention</atitle><jtitle>Tomography (Ann Arbor)</jtitle><addtitle>Tomography</addtitle><date>2023-11-24</date><risdate>2023</risdate><volume>9</volume><issue>6</issue><spage>2103</spage><epage>2115</epage><pages>2103-2115</pages><issn>2379-139X</issn><issn>2379-1381</issn><eissn>2379-139X</eissn><abstract>Accurate prediction of individual breast cancer risk paves the way for personalised prevention and early detection. The incorporation of genetic information and breast density has been shown to improve predictions for existing models, but detailed image-based features are yet to be included despite correlating with risk. Complex information can be extracted from mammograms using deep-learning algorithms, however, this is a challenging area of research, partly due to the lack of data within the field, and partly due to the computational burden. We propose an attention-based Multiple Instance Learning (MIL) model that can make accurate, short-term risk predictions from mammograms taken prior to the detection of cancer at full resolution. Current screen-detected cancers are mixed in with priors during model development to promote the detection of features associated with risk specifically and features associated with cancer formation, in addition to alleviating data scarcity issues. MAI-risk achieves an AUC of 0.747 [0.711, 0.783] in cancer-free screening mammograms of women who went on to develop a screen-detected or interval cancer between 5 and 55 months, outperforming both IBIS (AUC 0.594 [0.557, 0.633]) and VAS (AUC 0.649 [0.614, 0.683]) alone when accounting for established clinical risk factors.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38133069</pmid><doi>10.3390/tomography9060165</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9531-6109</orcidid><orcidid>https://orcid.org/0000-0002-8482-5784</orcidid><orcidid>https://orcid.org/0000-0002-5395-0427</orcidid><orcidid>https://orcid.org/0000-0001-8141-6515</orcidid><orcidid>https://orcid.org/0000-0001-6625-7739</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-139X |
ispartof | Tomography (Ann Arbor), 2023-11, Vol.9 (6), p.2103-2115 |
issn | 2379-139X 2379-1381 2379-139X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4198fe48becf41f9bd916dfe91a7755f |
source | PubMed Central (Open Access); EZB Electronic Journals Library |
subjects | Artificial intelligence attention Breast cancer Cancer Data mining deep learning Diagnosis Health aspects Mammography multiple instance learning Risk factors risk prediction |
title | Artificial Intelligence for Image-Based Breast Cancer Risk Prediction Using Attention |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20for%20Image-Based%20Breast%20Cancer%20Risk%20Prediction%20Using%20Attention&rft.jtitle=Tomography%20(Ann%20Arbor)&rft.au=Romanov,%20Stepan&rft.date=2023-11-24&rft.volume=9&rft.issue=6&rft.spage=2103&rft.epage=2115&rft.pages=2103-2115&rft.issn=2379-139X&rft.eissn=2379-139X&rft_id=info:doi/10.3390/tomography9060165&rft_dat=%3Cgale_doaj_%3EA779344607%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-33d3dad76f5186ad53c686bc359f2fa10bf14f75402278022614b2ac0ed849623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2905516552&rft_id=info:pmid/38133069&rft_galeid=A779344607&rfr_iscdi=true |