Loading…

Artificial Intelligence for Image-Based Breast Cancer Risk Prediction Using Attention

Accurate prediction of individual breast cancer risk paves the way for personalised prevention and early detection. The incorporation of genetic information and breast density has been shown to improve predictions for existing models, but detailed image-based features are yet to be included despite...

Full description

Saved in:
Bibliographic Details
Published in:Tomography (Ann Arbor) 2023-11, Vol.9 (6), p.2103-2115
Main Authors: Romanov, Stepan, Howell, Sacha, Harkness, Elaine, Bydder, Megan, Evans, D Gareth, Squires, Steven, Fergie, Martin, Astley, Sue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c477t-33d3dad76f5186ad53c686bc359f2fa10bf14f75402278022614b2ac0ed849623
cites cdi_FETCH-LOGICAL-c477t-33d3dad76f5186ad53c686bc359f2fa10bf14f75402278022614b2ac0ed849623
container_end_page 2115
container_issue 6
container_start_page 2103
container_title Tomography (Ann Arbor)
container_volume 9
creator Romanov, Stepan
Howell, Sacha
Harkness, Elaine
Bydder, Megan
Evans, D Gareth
Squires, Steven
Fergie, Martin
Astley, Sue
description Accurate prediction of individual breast cancer risk paves the way for personalised prevention and early detection. The incorporation of genetic information and breast density has been shown to improve predictions for existing models, but detailed image-based features are yet to be included despite correlating with risk. Complex information can be extracted from mammograms using deep-learning algorithms, however, this is a challenging area of research, partly due to the lack of data within the field, and partly due to the computational burden. We propose an attention-based Multiple Instance Learning (MIL) model that can make accurate, short-term risk predictions from mammograms taken prior to the detection of cancer at full resolution. Current screen-detected cancers are mixed in with priors during model development to promote the detection of features associated with risk specifically and features associated with cancer formation, in addition to alleviating data scarcity issues. MAI-risk achieves an AUC of 0.747 [0.711, 0.783] in cancer-free screening mammograms of women who went on to develop a screen-detected or interval cancer between 5 and 55 months, outperforming both IBIS (AUC 0.594 [0.557, 0.633]) and VAS (AUC 0.649 [0.614, 0.683]) alone when accounting for established clinical risk factors.
doi_str_mv 10.3390/tomography9060165
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4198fe48becf41f9bd916dfe91a7755f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779344607</galeid><doaj_id>oai_doaj_org_article_4198fe48becf41f9bd916dfe91a7755f</doaj_id><sourcerecordid>A779344607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-33d3dad76f5186ad53c686bc359f2fa10bf14f75402278022614b2ac0ed849623</originalsourceid><addsrcrecordid>eNptUU1v1DAQjRCIVqU_gAuKxIVLih1_xcftqsBKlUCIlbhZE3scXDbxYnsP_fd42VKBQLb8MX7veWZe07yk5IoxTd6WOMcpwf7bvSaSUCmeNOc9U7qjTH99-sf5rLnM-Y4Q0pO-TvW8OWMDZYxIfd5sV6kEH2yAXbtZCu52YcLFYutjajczTNhdQ0bXXieEXNo11MfUfg75e_spoQu2hLi02xyWqV2Vgsvx_qJ55mGX8fJhv2i2726-rD90tx_fb9ar285ypUrHmGMOnJJe0EGCE8zKQY6WCe17D5SMnnKvBK-Jq6EukvKxB0vQDVzLnl00m5Oui3Bn9inMkO5NhGB-BWKaDNT67A4Np3rwyIcRrefU69FpKp1HTUEpIXzVenPS2qf444C5mDlkWxsCC8ZDNr0mQtQ2i-O3r0_QCapyWHwsCewRblZKaca5JKqirv6DqsPhHGxc0Ica_4tATwSbYs4J_WNFlJij5-Yfzyvn1UPWh3FG98j47TD7Cd2Mp_g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2905516552</pqid></control><display><type>article</type><title>Artificial Intelligence for Image-Based Breast Cancer Risk Prediction Using Attention</title><source>PubMed Central (Open Access)</source><source>EZB Electronic Journals Library</source><creator>Romanov, Stepan ; Howell, Sacha ; Harkness, Elaine ; Bydder, Megan ; Evans, D Gareth ; Squires, Steven ; Fergie, Martin ; Astley, Sue</creator><creatorcontrib>Romanov, Stepan ; Howell, Sacha ; Harkness, Elaine ; Bydder, Megan ; Evans, D Gareth ; Squires, Steven ; Fergie, Martin ; Astley, Sue</creatorcontrib><description>Accurate prediction of individual breast cancer risk paves the way for personalised prevention and early detection. The incorporation of genetic information and breast density has been shown to improve predictions for existing models, but detailed image-based features are yet to be included despite correlating with risk. Complex information can be extracted from mammograms using deep-learning algorithms, however, this is a challenging area of research, partly due to the lack of data within the field, and partly due to the computational burden. We propose an attention-based Multiple Instance Learning (MIL) model that can make accurate, short-term risk predictions from mammograms taken prior to the detection of cancer at full resolution. Current screen-detected cancers are mixed in with priors during model development to promote the detection of features associated with risk specifically and features associated with cancer formation, in addition to alleviating data scarcity issues. MAI-risk achieves an AUC of 0.747 [0.711, 0.783] in cancer-free screening mammograms of women who went on to develop a screen-detected or interval cancer between 5 and 55 months, outperforming both IBIS (AUC 0.594 [0.557, 0.633]) and VAS (AUC 0.649 [0.614, 0.683]) alone when accounting for established clinical risk factors.</description><identifier>ISSN: 2379-139X</identifier><identifier>ISSN: 2379-1381</identifier><identifier>EISSN: 2379-139X</identifier><identifier>DOI: 10.3390/tomography9060165</identifier><identifier>PMID: 38133069</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Artificial intelligence ; attention ; Breast cancer ; Cancer ; Data mining ; deep learning ; Diagnosis ; Health aspects ; Mammography ; multiple instance learning ; Risk factors ; risk prediction</subject><ispartof>Tomography (Ann Arbor), 2023-11, Vol.9 (6), p.2103-2115</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-33d3dad76f5186ad53c686bc359f2fa10bf14f75402278022614b2ac0ed849623</citedby><cites>FETCH-LOGICAL-c477t-33d3dad76f5186ad53c686bc359f2fa10bf14f75402278022614b2ac0ed849623</cites><orcidid>0000-0002-9531-6109 ; 0000-0002-8482-5784 ; 0000-0002-5395-0427 ; 0000-0001-8141-6515 ; 0000-0001-6625-7739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38133069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Romanov, Stepan</creatorcontrib><creatorcontrib>Howell, Sacha</creatorcontrib><creatorcontrib>Harkness, Elaine</creatorcontrib><creatorcontrib>Bydder, Megan</creatorcontrib><creatorcontrib>Evans, D Gareth</creatorcontrib><creatorcontrib>Squires, Steven</creatorcontrib><creatorcontrib>Fergie, Martin</creatorcontrib><creatorcontrib>Astley, Sue</creatorcontrib><title>Artificial Intelligence for Image-Based Breast Cancer Risk Prediction Using Attention</title><title>Tomography (Ann Arbor)</title><addtitle>Tomography</addtitle><description>Accurate prediction of individual breast cancer risk paves the way for personalised prevention and early detection. The incorporation of genetic information and breast density has been shown to improve predictions for existing models, but detailed image-based features are yet to be included despite correlating with risk. Complex information can be extracted from mammograms using deep-learning algorithms, however, this is a challenging area of research, partly due to the lack of data within the field, and partly due to the computational burden. We propose an attention-based Multiple Instance Learning (MIL) model that can make accurate, short-term risk predictions from mammograms taken prior to the detection of cancer at full resolution. Current screen-detected cancers are mixed in with priors during model development to promote the detection of features associated with risk specifically and features associated with cancer formation, in addition to alleviating data scarcity issues. MAI-risk achieves an AUC of 0.747 [0.711, 0.783] in cancer-free screening mammograms of women who went on to develop a screen-detected or interval cancer between 5 and 55 months, outperforming both IBIS (AUC 0.594 [0.557, 0.633]) and VAS (AUC 0.649 [0.614, 0.683]) alone when accounting for established clinical risk factors.</description><subject>Artificial intelligence</subject><subject>attention</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Data mining</subject><subject>deep learning</subject><subject>Diagnosis</subject><subject>Health aspects</subject><subject>Mammography</subject><subject>multiple instance learning</subject><subject>Risk factors</subject><subject>risk prediction</subject><issn>2379-139X</issn><issn>2379-1381</issn><issn>2379-139X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptUU1v1DAQjRCIVqU_gAuKxIVLih1_xcftqsBKlUCIlbhZE3scXDbxYnsP_fd42VKBQLb8MX7veWZe07yk5IoxTd6WOMcpwf7bvSaSUCmeNOc9U7qjTH99-sf5rLnM-Y4Q0pO-TvW8OWMDZYxIfd5sV6kEH2yAXbtZCu52YcLFYutjajczTNhdQ0bXXieEXNo11MfUfg75e_spoQu2hLi02xyWqV2Vgsvx_qJ55mGX8fJhv2i2726-rD90tx_fb9ar285ypUrHmGMOnJJe0EGCE8zKQY6WCe17D5SMnnKvBK-Jq6EukvKxB0vQDVzLnl00m5Oui3Bn9inMkO5NhGB-BWKaDNT67A4Np3rwyIcRrefU69FpKp1HTUEpIXzVenPS2qf444C5mDlkWxsCC8ZDNr0mQtQ2i-O3r0_QCapyWHwsCewRblZKaca5JKqirv6DqsPhHGxc0Ica_4tATwSbYs4J_WNFlJij5-Yfzyvn1UPWh3FG98j47TD7Cd2Mp_g</recordid><startdate>20231124</startdate><enddate>20231124</enddate><creator>Romanov, Stepan</creator><creator>Howell, Sacha</creator><creator>Harkness, Elaine</creator><creator>Bydder, Megan</creator><creator>Evans, D Gareth</creator><creator>Squires, Steven</creator><creator>Fergie, Martin</creator><creator>Astley, Sue</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9531-6109</orcidid><orcidid>https://orcid.org/0000-0002-8482-5784</orcidid><orcidid>https://orcid.org/0000-0002-5395-0427</orcidid><orcidid>https://orcid.org/0000-0001-8141-6515</orcidid><orcidid>https://orcid.org/0000-0001-6625-7739</orcidid></search><sort><creationdate>20231124</creationdate><title>Artificial Intelligence for Image-Based Breast Cancer Risk Prediction Using Attention</title><author>Romanov, Stepan ; Howell, Sacha ; Harkness, Elaine ; Bydder, Megan ; Evans, D Gareth ; Squires, Steven ; Fergie, Martin ; Astley, Sue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-33d3dad76f5186ad53c686bc359f2fa10bf14f75402278022614b2ac0ed849623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>attention</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Data mining</topic><topic>deep learning</topic><topic>Diagnosis</topic><topic>Health aspects</topic><topic>Mammography</topic><topic>multiple instance learning</topic><topic>Risk factors</topic><topic>risk prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romanov, Stepan</creatorcontrib><creatorcontrib>Howell, Sacha</creatorcontrib><creatorcontrib>Harkness, Elaine</creatorcontrib><creatorcontrib>Bydder, Megan</creatorcontrib><creatorcontrib>Evans, D Gareth</creatorcontrib><creatorcontrib>Squires, Steven</creatorcontrib><creatorcontrib>Fergie, Martin</creatorcontrib><creatorcontrib>Astley, Sue</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Tomography (Ann Arbor)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romanov, Stepan</au><au>Howell, Sacha</au><au>Harkness, Elaine</au><au>Bydder, Megan</au><au>Evans, D Gareth</au><au>Squires, Steven</au><au>Fergie, Martin</au><au>Astley, Sue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence for Image-Based Breast Cancer Risk Prediction Using Attention</atitle><jtitle>Tomography (Ann Arbor)</jtitle><addtitle>Tomography</addtitle><date>2023-11-24</date><risdate>2023</risdate><volume>9</volume><issue>6</issue><spage>2103</spage><epage>2115</epage><pages>2103-2115</pages><issn>2379-139X</issn><issn>2379-1381</issn><eissn>2379-139X</eissn><abstract>Accurate prediction of individual breast cancer risk paves the way for personalised prevention and early detection. The incorporation of genetic information and breast density has been shown to improve predictions for existing models, but detailed image-based features are yet to be included despite correlating with risk. Complex information can be extracted from mammograms using deep-learning algorithms, however, this is a challenging area of research, partly due to the lack of data within the field, and partly due to the computational burden. We propose an attention-based Multiple Instance Learning (MIL) model that can make accurate, short-term risk predictions from mammograms taken prior to the detection of cancer at full resolution. Current screen-detected cancers are mixed in with priors during model development to promote the detection of features associated with risk specifically and features associated with cancer formation, in addition to alleviating data scarcity issues. MAI-risk achieves an AUC of 0.747 [0.711, 0.783] in cancer-free screening mammograms of women who went on to develop a screen-detected or interval cancer between 5 and 55 months, outperforming both IBIS (AUC 0.594 [0.557, 0.633]) and VAS (AUC 0.649 [0.614, 0.683]) alone when accounting for established clinical risk factors.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38133069</pmid><doi>10.3390/tomography9060165</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9531-6109</orcidid><orcidid>https://orcid.org/0000-0002-8482-5784</orcidid><orcidid>https://orcid.org/0000-0002-5395-0427</orcidid><orcidid>https://orcid.org/0000-0001-8141-6515</orcidid><orcidid>https://orcid.org/0000-0001-6625-7739</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-139X
ispartof Tomography (Ann Arbor), 2023-11, Vol.9 (6), p.2103-2115
issn 2379-139X
2379-1381
2379-139X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4198fe48becf41f9bd916dfe91a7755f
source PubMed Central (Open Access); EZB Electronic Journals Library
subjects Artificial intelligence
attention
Breast cancer
Cancer
Data mining
deep learning
Diagnosis
Health aspects
Mammography
multiple instance learning
Risk factors
risk prediction
title Artificial Intelligence for Image-Based Breast Cancer Risk Prediction Using Attention
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20for%20Image-Based%20Breast%20Cancer%20Risk%20Prediction%20Using%20Attention&rft.jtitle=Tomography%20(Ann%20Arbor)&rft.au=Romanov,%20Stepan&rft.date=2023-11-24&rft.volume=9&rft.issue=6&rft.spage=2103&rft.epage=2115&rft.pages=2103-2115&rft.issn=2379-139X&rft.eissn=2379-139X&rft_id=info:doi/10.3390/tomography9060165&rft_dat=%3Cgale_doaj_%3EA779344607%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-33d3dad76f5186ad53c686bc359f2fa10bf14f75402278022614b2ac0ed849623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2905516552&rft_id=info:pmid/38133069&rft_galeid=A779344607&rfr_iscdi=true