Loading…

A location discrete choice model of crime: Police elasticity and optimal deployment

Despite the common belief that police presence reduces crime, there is mixed evidence of such causal effects in major Latin America cities. In this work we identify the casual relationship between police presence and criminal events by using a large dataset of a randomized controlled police interven...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2024-03, Vol.19 (3), p.e0294020-e0294020
Main Authors: Newball-Ramírez, Douglas, Riascos Villegas, Álvaro J, Hoyos, Andrés, Dulce Rubio, Mateo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c590t-f03e31fff70447cb8a27b4cab396b49a87a345e97fbf1127af45bd27ce2036523
container_end_page e0294020
container_issue 3
container_start_page e0294020
container_title PloS one
container_volume 19
creator Newball-Ramírez, Douglas
Riascos Villegas, Álvaro J
Hoyos, Andrés
Dulce Rubio, Mateo
description Despite the common belief that police presence reduces crime, there is mixed evidence of such causal effects in major Latin America cities. In this work we identify the casual relationship between police presence and criminal events by using a large dataset of a randomized controlled police intervention in Bogotá D.C., Colombia. We use an Instrumental Variables approach to identify the causal effect of interest. Then we consistently estimate a Conditional Logit discrete choice model with aggregate data that allow us to identify agents' utilities for crime location using Two Stage Least Squares. The estimated parameters allow us to compute the police own and cross-elasticities of crime for each of the spatial locations and to evaluate different police patrolling strategies. The elasticity of crime to police presence is, on average across spatial locations, -0.26 for violent crime, -0.38 for property crime and -0.38 for total crime, all statistically significant. Estimates of cross-elasticities are close to zero; however, spillover effects are non-negligible. Counterfactual analysis of different police deployment strategies show, for an optimal allocating algorithm, an average reduction in violent crime of 7.09%, a reduction in property crimes of 8.48% and a reduction in total crimes of 5.15% at no additional cost. These results show the potential efficiency gains of using the model to deploy police resources in the city without increasing the total police time required.
doi_str_mv 10.1371/journal.pone.0294020
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_41a97775b1a34b8e8f38fb8d09551e9a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A786207697</galeid><doaj_id>oai_doaj_org_article_41a97775b1a34b8e8f38fb8d09551e9a</doaj_id><sourcerecordid>A786207697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-f03e31fff70447cb8a27b4cab396b49a87a345e97fbf1127af45bd27ce2036523</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QKgujFjPlqk3gjw-LHwMKKq96GND2ZyZI2s00qzr83dcZlCl5IL1pOn_NwcvIWxXOMlphy_PY2jEOv_XIXelgiIhki6EFxjiUli5og-vDk-6x4EuMtQhUVdf24OKOCcSQkOy9uVqUPRicX-rJ10QyQoDTb4AyUXWjBl8GWZnAdvCu_BD-VweuYnHFpX-q-LcMuuU77soWdD_sO-vS0eGS1j_Ds-L4ovn_88O3y8-Lq-tP6cnW1MJVEaWERBYqttRwxxk0jNOENM7qhsm6Y1IJryiqQ3DYWY8K1ZVXTEm4gn6iuCL0o1gdvG_St2uUh9bBXQTv1pxCGjdJDntSDYlhLznnV4OxsBAhLhW1Ei2RVYZA6u94fXLux6aA1-RiD9jPp_E_vtmoTfiqMJMUV4dnw-mgYwt0IMaku7xO81z2EMSoiq7oWlMg6oy8P6Ebn2VxvQ1aaCVcrLvKF8VpOwuU_qPy00DmTb926XJ81vJk1ZCbBr7TRY4xqffP1_9nrH3P21Qm7Be3TNgY_TqGJc5AdQDOEGAew9_vDSE2hVcfQqim06hja3PbidPf3TX9TSn8DOJ7ozg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956683296</pqid></control><display><type>article</type><title>A location discrete choice model of crime: Police elasticity and optimal deployment</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Newball-Ramírez, Douglas ; Riascos Villegas, Álvaro J ; Hoyos, Andrés ; Dulce Rubio, Mateo</creator><contributor>Cheong, Siew Ann</contributor><creatorcontrib>Newball-Ramírez, Douglas ; Riascos Villegas, Álvaro J ; Hoyos, Andrés ; Dulce Rubio, Mateo ; Cheong, Siew Ann</creatorcontrib><description>Despite the common belief that police presence reduces crime, there is mixed evidence of such causal effects in major Latin America cities. In this work we identify the casual relationship between police presence and criminal events by using a large dataset of a randomized controlled police intervention in Bogotá D.C., Colombia. We use an Instrumental Variables approach to identify the causal effect of interest. Then we consistently estimate a Conditional Logit discrete choice model with aggregate data that allow us to identify agents' utilities for crime location using Two Stage Least Squares. The estimated parameters allow us to compute the police own and cross-elasticities of crime for each of the spatial locations and to evaluate different police patrolling strategies. The elasticity of crime to police presence is, on average across spatial locations, -0.26 for violent crime, -0.38 for property crime and -0.38 for total crime, all statistically significant. Estimates of cross-elasticities are close to zero; however, spillover effects are non-negligible. Counterfactual analysis of different police deployment strategies show, for an optimal allocating algorithm, an average reduction in violent crime of 7.09%, a reduction in property crimes of 8.48% and a reduction in total crimes of 5.15% at no additional cost. These results show the potential efficiency gains of using the model to deploy police resources in the city without increasing the total police time required.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0294020</identifier><identifier>PMID: 38470894</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Cities ; Crime ; Crime prevention ; Criminals ; Earth Sciences ; Evaluation ; Humans ; Law enforcement ; Management ; Medicine and Health Sciences ; Methods ; People and Places ; Police ; Police administration ; Research and Analysis Methods ; Social Sciences ; Violence</subject><ispartof>PloS one, 2024-03, Vol.19 (3), p.e0294020-e0294020</ispartof><rights>Copyright: © 2024 Newball-Ramírez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Newball-Ramírez et al 2024 Newball-Ramírez et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c590t-f03e31fff70447cb8a27b4cab396b49a87a345e97fbf1127af45bd27ce2036523</cites><orcidid>0000-0002-6325-5559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10931527/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10931527/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38470894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cheong, Siew Ann</contributor><creatorcontrib>Newball-Ramírez, Douglas</creatorcontrib><creatorcontrib>Riascos Villegas, Álvaro J</creatorcontrib><creatorcontrib>Hoyos, Andrés</creatorcontrib><creatorcontrib>Dulce Rubio, Mateo</creatorcontrib><title>A location discrete choice model of crime: Police elasticity and optimal deployment</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Despite the common belief that police presence reduces crime, there is mixed evidence of such causal effects in major Latin America cities. In this work we identify the casual relationship between police presence and criminal events by using a large dataset of a randomized controlled police intervention in Bogotá D.C., Colombia. We use an Instrumental Variables approach to identify the causal effect of interest. Then we consistently estimate a Conditional Logit discrete choice model with aggregate data that allow us to identify agents' utilities for crime location using Two Stage Least Squares. The estimated parameters allow us to compute the police own and cross-elasticities of crime for each of the spatial locations and to evaluate different police patrolling strategies. The elasticity of crime to police presence is, on average across spatial locations, -0.26 for violent crime, -0.38 for property crime and -0.38 for total crime, all statistically significant. Estimates of cross-elasticities are close to zero; however, spillover effects are non-negligible. Counterfactual analysis of different police deployment strategies show, for an optimal allocating algorithm, an average reduction in violent crime of 7.09%, a reduction in property crimes of 8.48% and a reduction in total crimes of 5.15% at no additional cost. These results show the potential efficiency gains of using the model to deploy police resources in the city without increasing the total police time required.</description><subject>Cities</subject><subject>Crime</subject><subject>Crime prevention</subject><subject>Criminals</subject><subject>Earth Sciences</subject><subject>Evaluation</subject><subject>Humans</subject><subject>Law enforcement</subject><subject>Management</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>People and Places</subject><subject>Police</subject><subject>Police administration</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Violence</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QKgujFjPlqk3gjw-LHwMKKq96GND2ZyZI2s00qzr83dcZlCl5IL1pOn_NwcvIWxXOMlphy_PY2jEOv_XIXelgiIhki6EFxjiUli5og-vDk-6x4EuMtQhUVdf24OKOCcSQkOy9uVqUPRicX-rJ10QyQoDTb4AyUXWjBl8GWZnAdvCu_BD-VweuYnHFpX-q-LcMuuU77soWdD_sO-vS0eGS1j_Ds-L4ovn_88O3y8-Lq-tP6cnW1MJVEaWERBYqttRwxxk0jNOENM7qhsm6Y1IJryiqQ3DYWY8K1ZVXTEm4gn6iuCL0o1gdvG_St2uUh9bBXQTv1pxCGjdJDntSDYlhLznnV4OxsBAhLhW1Ei2RVYZA6u94fXLux6aA1-RiD9jPp_E_vtmoTfiqMJMUV4dnw-mgYwt0IMaku7xO81z2EMSoiq7oWlMg6oy8P6Ebn2VxvQ1aaCVcrLvKF8VpOwuU_qPy00DmTb926XJ81vJk1ZCbBr7TRY4xqffP1_9nrH3P21Qm7Be3TNgY_TqGJc5AdQDOEGAew9_vDSE2hVcfQqim06hja3PbidPf3TX9TSn8DOJ7ozg</recordid><startdate>20240312</startdate><enddate>20240312</enddate><creator>Newball-Ramírez, Douglas</creator><creator>Riascos Villegas, Álvaro J</creator><creator>Hoyos, Andrés</creator><creator>Dulce Rubio, Mateo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6325-5559</orcidid></search><sort><creationdate>20240312</creationdate><title>A location discrete choice model of crime: Police elasticity and optimal deployment</title><author>Newball-Ramírez, Douglas ; Riascos Villegas, Álvaro J ; Hoyos, Andrés ; Dulce Rubio, Mateo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-f03e31fff70447cb8a27b4cab396b49a87a345e97fbf1127af45bd27ce2036523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cities</topic><topic>Crime</topic><topic>Crime prevention</topic><topic>Criminals</topic><topic>Earth Sciences</topic><topic>Evaluation</topic><topic>Humans</topic><topic>Law enforcement</topic><topic>Management</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>People and Places</topic><topic>Police</topic><topic>Police administration</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Violence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newball-Ramírez, Douglas</creatorcontrib><creatorcontrib>Riascos Villegas, Álvaro J</creatorcontrib><creatorcontrib>Hoyos, Andrés</creatorcontrib><creatorcontrib>Dulce Rubio, Mateo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newball-Ramírez, Douglas</au><au>Riascos Villegas, Álvaro J</au><au>Hoyos, Andrés</au><au>Dulce Rubio, Mateo</au><au>Cheong, Siew Ann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A location discrete choice model of crime: Police elasticity and optimal deployment</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-03-12</date><risdate>2024</risdate><volume>19</volume><issue>3</issue><spage>e0294020</spage><epage>e0294020</epage><pages>e0294020-e0294020</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Despite the common belief that police presence reduces crime, there is mixed evidence of such causal effects in major Latin America cities. In this work we identify the casual relationship between police presence and criminal events by using a large dataset of a randomized controlled police intervention in Bogotá D.C., Colombia. We use an Instrumental Variables approach to identify the causal effect of interest. Then we consistently estimate a Conditional Logit discrete choice model with aggregate data that allow us to identify agents' utilities for crime location using Two Stage Least Squares. The estimated parameters allow us to compute the police own and cross-elasticities of crime for each of the spatial locations and to evaluate different police patrolling strategies. The elasticity of crime to police presence is, on average across spatial locations, -0.26 for violent crime, -0.38 for property crime and -0.38 for total crime, all statistically significant. Estimates of cross-elasticities are close to zero; however, spillover effects are non-negligible. Counterfactual analysis of different police deployment strategies show, for an optimal allocating algorithm, an average reduction in violent crime of 7.09%, a reduction in property crimes of 8.48% and a reduction in total crimes of 5.15% at no additional cost. These results show the potential efficiency gains of using the model to deploy police resources in the city without increasing the total police time required.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38470894</pmid><doi>10.1371/journal.pone.0294020</doi><tpages>e0294020</tpages><orcidid>https://orcid.org/0000-0002-6325-5559</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-03, Vol.19 (3), p.e0294020-e0294020
issn 1932-6203
1932-6203
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_41a97775b1a34b8e8f38fb8d09551e9a
source Publicly Available Content Database; PubMed Central
subjects Cities
Crime
Crime prevention
Criminals
Earth Sciences
Evaluation
Humans
Law enforcement
Management
Medicine and Health Sciences
Methods
People and Places
Police
Police administration
Research and Analysis Methods
Social Sciences
Violence
title A location discrete choice model of crime: Police elasticity and optimal deployment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20location%20discrete%20choice%20model%20of%20crime:%20Police%20elasticity%20and%20optimal%20deployment&rft.jtitle=PloS%20one&rft.au=Newball-Ram%C3%ADrez,%20Douglas&rft.date=2024-03-12&rft.volume=19&rft.issue=3&rft.spage=e0294020&rft.epage=e0294020&rft.pages=e0294020-e0294020&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0294020&rft_dat=%3Cgale_doaj_%3EA786207697%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c590t-f03e31fff70447cb8a27b4cab396b49a87a345e97fbf1127af45bd27ce2036523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2956683296&rft_id=info:pmid/38470894&rft_galeid=A786207697&rfr_iscdi=true