Loading…
A location discrete choice model of crime: Police elasticity and optimal deployment
Despite the common belief that police presence reduces crime, there is mixed evidence of such causal effects in major Latin America cities. In this work we identify the casual relationship between police presence and criminal events by using a large dataset of a randomized controlled police interven...
Saved in:
Published in: | PloS one 2024-03, Vol.19 (3), p.e0294020-e0294020 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c590t-f03e31fff70447cb8a27b4cab396b49a87a345e97fbf1127af45bd27ce2036523 |
container_end_page | e0294020 |
container_issue | 3 |
container_start_page | e0294020 |
container_title | PloS one |
container_volume | 19 |
creator | Newball-Ramírez, Douglas Riascos Villegas, Álvaro J Hoyos, Andrés Dulce Rubio, Mateo |
description | Despite the common belief that police presence reduces crime, there is mixed evidence of such causal effects in major Latin America cities. In this work we identify the casual relationship between police presence and criminal events by using a large dataset of a randomized controlled police intervention in Bogotá D.C., Colombia. We use an Instrumental Variables approach to identify the causal effect of interest. Then we consistently estimate a Conditional Logit discrete choice model with aggregate data that allow us to identify agents' utilities for crime location using Two Stage Least Squares. The estimated parameters allow us to compute the police own and cross-elasticities of crime for each of the spatial locations and to evaluate different police patrolling strategies. The elasticity of crime to police presence is, on average across spatial locations, -0.26 for violent crime, -0.38 for property crime and -0.38 for total crime, all statistically significant. Estimates of cross-elasticities are close to zero; however, spillover effects are non-negligible. Counterfactual analysis of different police deployment strategies show, for an optimal allocating algorithm, an average reduction in violent crime of 7.09%, a reduction in property crimes of 8.48% and a reduction in total crimes of 5.15% at no additional cost. These results show the potential efficiency gains of using the model to deploy police resources in the city without increasing the total police time required. |
doi_str_mv | 10.1371/journal.pone.0294020 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_41a97775b1a34b8e8f38fb8d09551e9a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A786207697</galeid><doaj_id>oai_doaj_org_article_41a97775b1a34b8e8f38fb8d09551e9a</doaj_id><sourcerecordid>A786207697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-f03e31fff70447cb8a27b4cab396b49a87a345e97fbf1127af45bd27ce2036523</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QKgujFjPlqk3gjw-LHwMKKq96GND2ZyZI2s00qzr83dcZlCl5IL1pOn_NwcvIWxXOMlphy_PY2jEOv_XIXelgiIhki6EFxjiUli5og-vDk-6x4EuMtQhUVdf24OKOCcSQkOy9uVqUPRicX-rJ10QyQoDTb4AyUXWjBl8GWZnAdvCu_BD-VweuYnHFpX-q-LcMuuU77soWdD_sO-vS0eGS1j_Ds-L4ovn_88O3y8-Lq-tP6cnW1MJVEaWERBYqttRwxxk0jNOENM7qhsm6Y1IJryiqQ3DYWY8K1ZVXTEm4gn6iuCL0o1gdvG_St2uUh9bBXQTv1pxCGjdJDntSDYlhLznnV4OxsBAhLhW1Ei2RVYZA6u94fXLux6aA1-RiD9jPp_E_vtmoTfiqMJMUV4dnw-mgYwt0IMaku7xO81z2EMSoiq7oWlMg6oy8P6Ebn2VxvQ1aaCVcrLvKF8VpOwuU_qPy00DmTb926XJ81vJk1ZCbBr7TRY4xqffP1_9nrH3P21Qm7Be3TNgY_TqGJc5AdQDOEGAew9_vDSE2hVcfQqim06hja3PbidPf3TX9TSn8DOJ7ozg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956683296</pqid></control><display><type>article</type><title>A location discrete choice model of crime: Police elasticity and optimal deployment</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Newball-Ramírez, Douglas ; Riascos Villegas, Álvaro J ; Hoyos, Andrés ; Dulce Rubio, Mateo</creator><contributor>Cheong, Siew Ann</contributor><creatorcontrib>Newball-Ramírez, Douglas ; Riascos Villegas, Álvaro J ; Hoyos, Andrés ; Dulce Rubio, Mateo ; Cheong, Siew Ann</creatorcontrib><description>Despite the common belief that police presence reduces crime, there is mixed evidence of such causal effects in major Latin America cities. In this work we identify the casual relationship between police presence and criminal events by using a large dataset of a randomized controlled police intervention in Bogotá D.C., Colombia. We use an Instrumental Variables approach to identify the causal effect of interest. Then we consistently estimate a Conditional Logit discrete choice model with aggregate data that allow us to identify agents' utilities for crime location using Two Stage Least Squares. The estimated parameters allow us to compute the police own and cross-elasticities of crime for each of the spatial locations and to evaluate different police patrolling strategies. The elasticity of crime to police presence is, on average across spatial locations, -0.26 for violent crime, -0.38 for property crime and -0.38 for total crime, all statistically significant. Estimates of cross-elasticities are close to zero; however, spillover effects are non-negligible. Counterfactual analysis of different police deployment strategies show, for an optimal allocating algorithm, an average reduction in violent crime of 7.09%, a reduction in property crimes of 8.48% and a reduction in total crimes of 5.15% at no additional cost. These results show the potential efficiency gains of using the model to deploy police resources in the city without increasing the total police time required.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0294020</identifier><identifier>PMID: 38470894</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Cities ; Crime ; Crime prevention ; Criminals ; Earth Sciences ; Evaluation ; Humans ; Law enforcement ; Management ; Medicine and Health Sciences ; Methods ; People and Places ; Police ; Police administration ; Research and Analysis Methods ; Social Sciences ; Violence</subject><ispartof>PloS one, 2024-03, Vol.19 (3), p.e0294020-e0294020</ispartof><rights>Copyright: © 2024 Newball-Ramírez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Newball-Ramírez et al 2024 Newball-Ramírez et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c590t-f03e31fff70447cb8a27b4cab396b49a87a345e97fbf1127af45bd27ce2036523</cites><orcidid>0000-0002-6325-5559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10931527/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10931527/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38470894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cheong, Siew Ann</contributor><creatorcontrib>Newball-Ramírez, Douglas</creatorcontrib><creatorcontrib>Riascos Villegas, Álvaro J</creatorcontrib><creatorcontrib>Hoyos, Andrés</creatorcontrib><creatorcontrib>Dulce Rubio, Mateo</creatorcontrib><title>A location discrete choice model of crime: Police elasticity and optimal deployment</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Despite the common belief that police presence reduces crime, there is mixed evidence of such causal effects in major Latin America cities. In this work we identify the casual relationship between police presence and criminal events by using a large dataset of a randomized controlled police intervention in Bogotá D.C., Colombia. We use an Instrumental Variables approach to identify the causal effect of interest. Then we consistently estimate a Conditional Logit discrete choice model with aggregate data that allow us to identify agents' utilities for crime location using Two Stage Least Squares. The estimated parameters allow us to compute the police own and cross-elasticities of crime for each of the spatial locations and to evaluate different police patrolling strategies. The elasticity of crime to police presence is, on average across spatial locations, -0.26 for violent crime, -0.38 for property crime and -0.38 for total crime, all statistically significant. Estimates of cross-elasticities are close to zero; however, spillover effects are non-negligible. Counterfactual analysis of different police deployment strategies show, for an optimal allocating algorithm, an average reduction in violent crime of 7.09%, a reduction in property crimes of 8.48% and a reduction in total crimes of 5.15% at no additional cost. These results show the potential efficiency gains of using the model to deploy police resources in the city without increasing the total police time required.</description><subject>Cities</subject><subject>Crime</subject><subject>Crime prevention</subject><subject>Criminals</subject><subject>Earth Sciences</subject><subject>Evaluation</subject><subject>Humans</subject><subject>Law enforcement</subject><subject>Management</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>People and Places</subject><subject>Police</subject><subject>Police administration</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Violence</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QKgujFjPlqk3gjw-LHwMKKq96GND2ZyZI2s00qzr83dcZlCl5IL1pOn_NwcvIWxXOMlphy_PY2jEOv_XIXelgiIhki6EFxjiUli5og-vDk-6x4EuMtQhUVdf24OKOCcSQkOy9uVqUPRicX-rJ10QyQoDTb4AyUXWjBl8GWZnAdvCu_BD-VweuYnHFpX-q-LcMuuU77soWdD_sO-vS0eGS1j_Ds-L4ovn_88O3y8-Lq-tP6cnW1MJVEaWERBYqttRwxxk0jNOENM7qhsm6Y1IJryiqQ3DYWY8K1ZVXTEm4gn6iuCL0o1gdvG_St2uUh9bBXQTv1pxCGjdJDntSDYlhLznnV4OxsBAhLhW1Ei2RVYZA6u94fXLux6aA1-RiD9jPp_E_vtmoTfiqMJMUV4dnw-mgYwt0IMaku7xO81z2EMSoiq7oWlMg6oy8P6Ebn2VxvQ1aaCVcrLvKF8VpOwuU_qPy00DmTb926XJ81vJk1ZCbBr7TRY4xqffP1_9nrH3P21Qm7Be3TNgY_TqGJc5AdQDOEGAew9_vDSE2hVcfQqim06hja3PbidPf3TX9TSn8DOJ7ozg</recordid><startdate>20240312</startdate><enddate>20240312</enddate><creator>Newball-Ramírez, Douglas</creator><creator>Riascos Villegas, Álvaro J</creator><creator>Hoyos, Andrés</creator><creator>Dulce Rubio, Mateo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6325-5559</orcidid></search><sort><creationdate>20240312</creationdate><title>A location discrete choice model of crime: Police elasticity and optimal deployment</title><author>Newball-Ramírez, Douglas ; Riascos Villegas, Álvaro J ; Hoyos, Andrés ; Dulce Rubio, Mateo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-f03e31fff70447cb8a27b4cab396b49a87a345e97fbf1127af45bd27ce2036523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cities</topic><topic>Crime</topic><topic>Crime prevention</topic><topic>Criminals</topic><topic>Earth Sciences</topic><topic>Evaluation</topic><topic>Humans</topic><topic>Law enforcement</topic><topic>Management</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>People and Places</topic><topic>Police</topic><topic>Police administration</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Violence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newball-Ramírez, Douglas</creatorcontrib><creatorcontrib>Riascos Villegas, Álvaro J</creatorcontrib><creatorcontrib>Hoyos, Andrés</creatorcontrib><creatorcontrib>Dulce Rubio, Mateo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newball-Ramírez, Douglas</au><au>Riascos Villegas, Álvaro J</au><au>Hoyos, Andrés</au><au>Dulce Rubio, Mateo</au><au>Cheong, Siew Ann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A location discrete choice model of crime: Police elasticity and optimal deployment</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-03-12</date><risdate>2024</risdate><volume>19</volume><issue>3</issue><spage>e0294020</spage><epage>e0294020</epage><pages>e0294020-e0294020</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Despite the common belief that police presence reduces crime, there is mixed evidence of such causal effects in major Latin America cities. In this work we identify the casual relationship between police presence and criminal events by using a large dataset of a randomized controlled police intervention in Bogotá D.C., Colombia. We use an Instrumental Variables approach to identify the causal effect of interest. Then we consistently estimate a Conditional Logit discrete choice model with aggregate data that allow us to identify agents' utilities for crime location using Two Stage Least Squares. The estimated parameters allow us to compute the police own and cross-elasticities of crime for each of the spatial locations and to evaluate different police patrolling strategies. The elasticity of crime to police presence is, on average across spatial locations, -0.26 for violent crime, -0.38 for property crime and -0.38 for total crime, all statistically significant. Estimates of cross-elasticities are close to zero; however, spillover effects are non-negligible. Counterfactual analysis of different police deployment strategies show, for an optimal allocating algorithm, an average reduction in violent crime of 7.09%, a reduction in property crimes of 8.48% and a reduction in total crimes of 5.15% at no additional cost. These results show the potential efficiency gains of using the model to deploy police resources in the city without increasing the total police time required.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38470894</pmid><doi>10.1371/journal.pone.0294020</doi><tpages>e0294020</tpages><orcidid>https://orcid.org/0000-0002-6325-5559</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-03, Vol.19 (3), p.e0294020-e0294020 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_41a97775b1a34b8e8f38fb8d09551e9a |
source | Publicly Available Content Database; PubMed Central |
subjects | Cities Crime Crime prevention Criminals Earth Sciences Evaluation Humans Law enforcement Management Medicine and Health Sciences Methods People and Places Police Police administration Research and Analysis Methods Social Sciences Violence |
title | A location discrete choice model of crime: Police elasticity and optimal deployment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20location%20discrete%20choice%20model%20of%20crime:%20Police%20elasticity%20and%20optimal%20deployment&rft.jtitle=PloS%20one&rft.au=Newball-Ram%C3%ADrez,%20Douglas&rft.date=2024-03-12&rft.volume=19&rft.issue=3&rft.spage=e0294020&rft.epage=e0294020&rft.pages=e0294020-e0294020&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0294020&rft_dat=%3Cgale_doaj_%3EA786207697%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c590t-f03e31fff70447cb8a27b4cab396b49a87a345e97fbf1127af45bd27ce2036523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2956683296&rft_id=info:pmid/38470894&rft_galeid=A786207697&rfr_iscdi=true |