Loading…
Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction
Fire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to red...
Saved in:
Published in: | Journal of computer science and technology (La Plata) 2017-04, Vol.17 (1), p.12-19 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | eng ; spa |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 19 |
container_issue | 1 |
container_start_page | 12 |
container_title | Journal of computer science and technology (La Plata) |
container_volume | 17 |
creator | Miguel Méndez Garabetti BIanchini, Germán Tardivo, María Laura Scutari, Paola Caymes Gil Costa, Graciela Verónica |
description | Fire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to reduce the effects of uncertainty In this paper we present the Hybrid Evolutionary-Statistical System with Island Model (HESS-IM). It is a hybrid uncertainty reduction method applied to forest fire spread prediction that combines the advantages of two evolutionary population metaheuristics: Evolutionary Algorithms and Differential Evolution. We evaluate the HESS-IM with three controlled fires scenarios, and we obtained favorable results compared to the previous methods in the literature. |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_41a9c4c9711c44d1bf62ba2ea4fc3d6b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_41a9c4c9711c44d1bf62ba2ea4fc3d6b</doaj_id><sourcerecordid>2544433073</sourcerecordid><originalsourceid>FETCH-LOGICAL-d246t-e0c58d456396800e5fe0f4cbd2c0748f0825b3e388cb829699bb23fad566e9743</originalsourceid><addsrcrecordid>eNo9j01LAzEYhBdRsNT-h4DnhWzybjY5lmJtoWJRew75eFdT1s2aTQ_99y6teJphGB5mbopZJYQoBeXy9t-DuC8W4xgsBWiAy6aaFYfN2abgy71JpuuwI4feYcom9PlM3tCfXA6xJy-Yv6Iny2HoAnqSI1nHhGMm65CQvA8JjSf7hD5c-g_FXWu6ERd_Oi8O66eP1abcvT5vV8td6RmIXCJ1tfRQC66EpBTrFmkLznrmaAOypZLVliOX0lnJlFDKWsZb42shUE0X5sX2yvXRHPWQwrdJZx1N0Jcgpk9tUg6uQw2VUQ6caqrKAfjKtoJZw9BA67gXdmI9XllDij-n6Zs-xlPqp_ma1QDAOW04_wUw12eW</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544433073</pqid></control><display><type>article</type><title>Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction</title><source>ABI/INFORM Global</source><source>Publicly Available Content (ProQuest)</source><creator>Miguel Méndez Garabetti ; BIanchini, Germán ; Tardivo, María Laura ; Scutari, Paola Caymes ; Gil Costa, Graciela Verónica</creator><creatorcontrib>Miguel Méndez Garabetti ; BIanchini, Germán ; Tardivo, María Laura ; Scutari, Paola Caymes ; Gil Costa, Graciela Verónica</creatorcontrib><description>Fire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to reduce the effects of uncertainty In this paper we present the Hybrid Evolutionary-Statistical System with Island Model (HESS-IM). It is a hybrid uncertainty reduction method applied to forest fire spread prediction that combines the advantages of two evolutionary population metaheuristics: Evolutionary Algorithms and Differential Evolution. We evaluate the HESS-IM with three controlled fires scenarios, and we obtained favorable results compared to the previous methods in the literature.</description><identifier>ISSN: 1666-6046</identifier><identifier>EISSN: 1666-6038</identifier><language>eng ; spa</language><publisher>La Plata: Universidad Nacional de la Plata, Journal of Computer Science and Technology</publisher><subject>differential evolution ; Evolutionary algorithms ; Evolutionary computation ; fire prediction ; Forest fires ; Heuristic methods ; hybrid metaheuristics ; Hybrid systems ; Reduction ; Uncertainty ; uncertainty reduction</subject><ispartof>Journal of computer science and technology (La Plata), 2017-04, Vol.17 (1), p.12-19</ispartof><rights>2017. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2544433073?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,25753,36060,37012,44363,44590</link.rule.ids></links><search><creatorcontrib>Miguel Méndez Garabetti</creatorcontrib><creatorcontrib>BIanchini, Germán</creatorcontrib><creatorcontrib>Tardivo, María Laura</creatorcontrib><creatorcontrib>Scutari, Paola Caymes</creatorcontrib><creatorcontrib>Gil Costa, Graciela Verónica</creatorcontrib><title>Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction</title><title>Journal of computer science and technology (La Plata)</title><description>Fire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to reduce the effects of uncertainty In this paper we present the Hybrid Evolutionary-Statistical System with Island Model (HESS-IM). It is a hybrid uncertainty reduction method applied to forest fire spread prediction that combines the advantages of two evolutionary population metaheuristics: Evolutionary Algorithms and Differential Evolution. We evaluate the HESS-IM with three controlled fires scenarios, and we obtained favorable results compared to the previous methods in the literature.</description><subject>differential evolution</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>fire prediction</subject><subject>Forest fires</subject><subject>Heuristic methods</subject><subject>hybrid metaheuristics</subject><subject>Hybrid systems</subject><subject>Reduction</subject><subject>Uncertainty</subject><subject>uncertainty reduction</subject><issn>1666-6046</issn><issn>1666-6038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNo9j01LAzEYhBdRsNT-h4DnhWzybjY5lmJtoWJRew75eFdT1s2aTQ_99y6teJphGB5mbopZJYQoBeXy9t-DuC8W4xgsBWiAy6aaFYfN2abgy71JpuuwI4feYcom9PlM3tCfXA6xJy-Yv6Iny2HoAnqSI1nHhGMm65CQvA8JjSf7hD5c-g_FXWu6ERd_Oi8O66eP1abcvT5vV8td6RmIXCJ1tfRQC66EpBTrFmkLznrmaAOypZLVliOX0lnJlFDKWsZb42shUE0X5sX2yvXRHPWQwrdJZx1N0Jcgpk9tUg6uQw2VUQ6caqrKAfjKtoJZw9BA67gXdmI9XllDij-n6Zs-xlPqp_ma1QDAOW04_wUw12eW</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Miguel Méndez Garabetti</creator><creator>BIanchini, Germán</creator><creator>Tardivo, María Laura</creator><creator>Scutari, Paola Caymes</creator><creator>Gil Costa, Graciela Verónica</creator><general>Universidad Nacional de la Plata, Journal of Computer Science and Technology</general><general>Postgraduate Office, School of Computer Science, Universidad Nacional de La Plata</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20170401</creationdate><title>Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction</title><author>Miguel Méndez Garabetti ; BIanchini, Germán ; Tardivo, María Laura ; Scutari, Paola Caymes ; Gil Costa, Graciela Verónica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d246t-e0c58d456396800e5fe0f4cbd2c0748f0825b3e388cb829699bb23fad566e9743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; spa</language><creationdate>2017</creationdate><topic>differential evolution</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>fire prediction</topic><topic>Forest fires</topic><topic>Heuristic methods</topic><topic>hybrid metaheuristics</topic><topic>Hybrid systems</topic><topic>Reduction</topic><topic>Uncertainty</topic><topic>uncertainty reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miguel Méndez Garabetti</creatorcontrib><creatorcontrib>BIanchini, Germán</creatorcontrib><creatorcontrib>Tardivo, María Laura</creatorcontrib><creatorcontrib>Scutari, Paola Caymes</creatorcontrib><creatorcontrib>Gil Costa, Graciela Verónica</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of computer science and technology (La Plata)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miguel Méndez Garabetti</au><au>BIanchini, Germán</au><au>Tardivo, María Laura</au><au>Scutari, Paola Caymes</au><au>Gil Costa, Graciela Verónica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction</atitle><jtitle>Journal of computer science and technology (La Plata)</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>17</volume><issue>1</issue><spage>12</spage><epage>19</epage><pages>12-19</pages><issn>1666-6046</issn><eissn>1666-6038</eissn><abstract>Fire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to reduce the effects of uncertainty In this paper we present the Hybrid Evolutionary-Statistical System with Island Model (HESS-IM). It is a hybrid uncertainty reduction method applied to forest fire spread prediction that combines the advantages of two evolutionary population metaheuristics: Evolutionary Algorithms and Differential Evolution. We evaluate the HESS-IM with three controlled fires scenarios, and we obtained favorable results compared to the previous methods in the literature.</abstract><cop>La Plata</cop><pub>Universidad Nacional de la Plata, Journal of Computer Science and Technology</pub><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1666-6046 |
ispartof | Journal of computer science and technology (La Plata), 2017-04, Vol.17 (1), p.12-19 |
issn | 1666-6046 1666-6038 |
language | eng ; spa |
recordid | cdi_doaj_primary_oai_doaj_org_article_41a9c4c9711c44d1bf62ba2ea4fc3d6b |
source | ABI/INFORM Global; Publicly Available Content (ProQuest) |
subjects | differential evolution Evolutionary algorithms Evolutionary computation fire prediction Forest fires Heuristic methods hybrid metaheuristics Hybrid systems Reduction Uncertainty uncertainty reduction |
title | Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid-Parallel%20Uncertainty%20Reduction%20Method%20Applied%20to%20Forest%20Fire%20Spread%20Prediction&rft.jtitle=Journal%20of%20computer%20science%20and%20technology%20(La%20Plata)&rft.au=Miguel%20M%C3%A9ndez%20Garabetti&rft.date=2017-04-01&rft.volume=17&rft.issue=1&rft.spage=12&rft.epage=19&rft.pages=12-19&rft.issn=1666-6046&rft.eissn=1666-6038&rft_id=info:doi/&rft_dat=%3Cproquest_doaj_%3E2544433073%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d246t-e0c58d456396800e5fe0f4cbd2c0748f0825b3e388cb829699bb23fad566e9743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544433073&rft_id=info:pmid/&rfr_iscdi=true |