Loading…

Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction

Fire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to red...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computer science and technology (La Plata) 2017-04, Vol.17 (1), p.12-19
Main Authors: Miguel Méndez Garabetti, BIanchini, Germán, Tardivo, María Laura, Scutari, Paola Caymes, Gil Costa, Graciela Verónica
Format: Article
Language:eng ; spa
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 19
container_issue 1
container_start_page 12
container_title Journal of computer science and technology (La Plata)
container_volume 17
creator Miguel Méndez Garabetti
BIanchini, Germán
Tardivo, María Laura
Scutari, Paola Caymes
Gil Costa, Graciela Verónica
description Fire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to reduce the effects of uncertainty In this paper we present the Hybrid Evolutionary-Statistical System with Island Model (HESS-IM). It is a hybrid uncertainty reduction method applied to forest fire spread prediction that combines the advantages of two evolutionary population metaheuristics: Evolutionary Algorithms and Differential Evolution. We evaluate the HESS-IM with three controlled fires scenarios, and we obtained favorable results compared to the previous methods in the literature.
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_41a9c4c9711c44d1bf62ba2ea4fc3d6b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_41a9c4c9711c44d1bf62ba2ea4fc3d6b</doaj_id><sourcerecordid>2544433073</sourcerecordid><originalsourceid>FETCH-LOGICAL-d246t-e0c58d456396800e5fe0f4cbd2c0748f0825b3e388cb829699bb23fad566e9743</originalsourceid><addsrcrecordid>eNo9j01LAzEYhBdRsNT-h4DnhWzybjY5lmJtoWJRew75eFdT1s2aTQ_99y6teJphGB5mbopZJYQoBeXy9t-DuC8W4xgsBWiAy6aaFYfN2abgy71JpuuwI4feYcom9PlM3tCfXA6xJy-Yv6Iny2HoAnqSI1nHhGMm65CQvA8JjSf7hD5c-g_FXWu6ERd_Oi8O66eP1abcvT5vV8td6RmIXCJ1tfRQC66EpBTrFmkLznrmaAOypZLVliOX0lnJlFDKWsZb42shUE0X5sX2yvXRHPWQwrdJZx1N0Jcgpk9tUg6uQw2VUQ6caqrKAfjKtoJZw9BA67gXdmI9XllDij-n6Zs-xlPqp_ma1QDAOW04_wUw12eW</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544433073</pqid></control><display><type>article</type><title>Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction</title><source>ABI/INFORM Global</source><source>Publicly Available Content (ProQuest)</source><creator>Miguel Méndez Garabetti ; BIanchini, Germán ; Tardivo, María Laura ; Scutari, Paola Caymes ; Gil Costa, Graciela Verónica</creator><creatorcontrib>Miguel Méndez Garabetti ; BIanchini, Germán ; Tardivo, María Laura ; Scutari, Paola Caymes ; Gil Costa, Graciela Verónica</creatorcontrib><description>Fire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to reduce the effects of uncertainty In this paper we present the Hybrid Evolutionary-Statistical System with Island Model (HESS-IM). It is a hybrid uncertainty reduction method applied to forest fire spread prediction that combines the advantages of two evolutionary population metaheuristics: Evolutionary Algorithms and Differential Evolution. We evaluate the HESS-IM with three controlled fires scenarios, and we obtained favorable results compared to the previous methods in the literature.</description><identifier>ISSN: 1666-6046</identifier><identifier>EISSN: 1666-6038</identifier><language>eng ; spa</language><publisher>La Plata: Universidad Nacional de la Plata, Journal of Computer Science and Technology</publisher><subject>differential evolution ; Evolutionary algorithms ; Evolutionary computation ; fire prediction ; Forest fires ; Heuristic methods ; hybrid metaheuristics ; Hybrid systems ; Reduction ; Uncertainty ; uncertainty reduction</subject><ispartof>Journal of computer science and technology (La Plata), 2017-04, Vol.17 (1), p.12-19</ispartof><rights>2017. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2544433073?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,25753,36060,37012,44363,44590</link.rule.ids></links><search><creatorcontrib>Miguel Méndez Garabetti</creatorcontrib><creatorcontrib>BIanchini, Germán</creatorcontrib><creatorcontrib>Tardivo, María Laura</creatorcontrib><creatorcontrib>Scutari, Paola Caymes</creatorcontrib><creatorcontrib>Gil Costa, Graciela Verónica</creatorcontrib><title>Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction</title><title>Journal of computer science and technology (La Plata)</title><description>Fire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to reduce the effects of uncertainty In this paper we present the Hybrid Evolutionary-Statistical System with Island Model (HESS-IM). It is a hybrid uncertainty reduction method applied to forest fire spread prediction that combines the advantages of two evolutionary population metaheuristics: Evolutionary Algorithms and Differential Evolution. We evaluate the HESS-IM with three controlled fires scenarios, and we obtained favorable results compared to the previous methods in the literature.</description><subject>differential evolution</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>fire prediction</subject><subject>Forest fires</subject><subject>Heuristic methods</subject><subject>hybrid metaheuristics</subject><subject>Hybrid systems</subject><subject>Reduction</subject><subject>Uncertainty</subject><subject>uncertainty reduction</subject><issn>1666-6046</issn><issn>1666-6038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNo9j01LAzEYhBdRsNT-h4DnhWzybjY5lmJtoWJRew75eFdT1s2aTQ_99y6teJphGB5mbopZJYQoBeXy9t-DuC8W4xgsBWiAy6aaFYfN2abgy71JpuuwI4feYcom9PlM3tCfXA6xJy-Yv6Iny2HoAnqSI1nHhGMm65CQvA8JjSf7hD5c-g_FXWu6ERd_Oi8O66eP1abcvT5vV8td6RmIXCJ1tfRQC66EpBTrFmkLznrmaAOypZLVliOX0lnJlFDKWsZb42shUE0X5sX2yvXRHPWQwrdJZx1N0Jcgpk9tUg6uQw2VUQ6caqrKAfjKtoJZw9BA67gXdmI9XllDij-n6Zs-xlPqp_ma1QDAOW04_wUw12eW</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Miguel Méndez Garabetti</creator><creator>BIanchini, Germán</creator><creator>Tardivo, María Laura</creator><creator>Scutari, Paola Caymes</creator><creator>Gil Costa, Graciela Verónica</creator><general>Universidad Nacional de la Plata, Journal of Computer Science and Technology</general><general>Postgraduate Office, School of Computer Science, Universidad Nacional de La Plata</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20170401</creationdate><title>Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction</title><author>Miguel Méndez Garabetti ; BIanchini, Germán ; Tardivo, María Laura ; Scutari, Paola Caymes ; Gil Costa, Graciela Verónica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d246t-e0c58d456396800e5fe0f4cbd2c0748f0825b3e388cb829699bb23fad566e9743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; spa</language><creationdate>2017</creationdate><topic>differential evolution</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>fire prediction</topic><topic>Forest fires</topic><topic>Heuristic methods</topic><topic>hybrid metaheuristics</topic><topic>Hybrid systems</topic><topic>Reduction</topic><topic>Uncertainty</topic><topic>uncertainty reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miguel Méndez Garabetti</creatorcontrib><creatorcontrib>BIanchini, Germán</creatorcontrib><creatorcontrib>Tardivo, María Laura</creatorcontrib><creatorcontrib>Scutari, Paola Caymes</creatorcontrib><creatorcontrib>Gil Costa, Graciela Verónica</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of computer science and technology (La Plata)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miguel Méndez Garabetti</au><au>BIanchini, Germán</au><au>Tardivo, María Laura</au><au>Scutari, Paola Caymes</au><au>Gil Costa, Graciela Verónica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction</atitle><jtitle>Journal of computer science and technology (La Plata)</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>17</volume><issue>1</issue><spage>12</spage><epage>19</epage><pages>12-19</pages><issn>1666-6046</issn><eissn>1666-6038</eissn><abstract>Fire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to reduce the effects of uncertainty In this paper we present the Hybrid Evolutionary-Statistical System with Island Model (HESS-IM). It is a hybrid uncertainty reduction method applied to forest fire spread prediction that combines the advantages of two evolutionary population metaheuristics: Evolutionary Algorithms and Differential Evolution. We evaluate the HESS-IM with three controlled fires scenarios, and we obtained favorable results compared to the previous methods in the literature.</abstract><cop>La Plata</cop><pub>Universidad Nacional de la Plata, Journal of Computer Science and Technology</pub><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1666-6046
ispartof Journal of computer science and technology (La Plata), 2017-04, Vol.17 (1), p.12-19
issn 1666-6046
1666-6038
language eng ; spa
recordid cdi_doaj_primary_oai_doaj_org_article_41a9c4c9711c44d1bf62ba2ea4fc3d6b
source ABI/INFORM Global; Publicly Available Content (ProQuest)
subjects differential evolution
Evolutionary algorithms
Evolutionary computation
fire prediction
Forest fires
Heuristic methods
hybrid metaheuristics
Hybrid systems
Reduction
Uncertainty
uncertainty reduction
title Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid-Parallel%20Uncertainty%20Reduction%20Method%20Applied%20to%20Forest%20Fire%20Spread%20Prediction&rft.jtitle=Journal%20of%20computer%20science%20and%20technology%20(La%20Plata)&rft.au=Miguel%20M%C3%A9ndez%20Garabetti&rft.date=2017-04-01&rft.volume=17&rft.issue=1&rft.spage=12&rft.epage=19&rft.pages=12-19&rft.issn=1666-6046&rft.eissn=1666-6038&rft_id=info:doi/&rft_dat=%3Cproquest_doaj_%3E2544433073%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d246t-e0c58d456396800e5fe0f4cbd2c0748f0825b3e388cb829699bb23fad566e9743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544433073&rft_id=info:pmid/&rfr_iscdi=true