Loading…

Volatile organic compound emissions from solvent- and water-borne coatings – compositional differences and tracer compound identifications

The emissions of volatile organic compounds (VOCs) from volatile chemical products (VCPs) – specifically personal care products, cleaning agents, coatings, adhesives, and pesticides – are emerging as the largest source of petroleum-derived organic carbon in US cities. Previous work has shown that th...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2021-04, Vol.21 (8), p.6005-6022
Main Authors: Stockwell, Chelsea E, Coggon, Matthew M, Gkatzelis, Georgios I, Ortega, John, McDonald, Brian C, Peischl, Jeff, Aikin, Kenneth, Gilman, Jessica B, Trainer, Michael, Warneke, Carsten
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c546t-d77bfa63402e096b95a9d89db43aee40f75fbe347c382e99eb16436873c294df3
cites cdi_FETCH-LOGICAL-c546t-d77bfa63402e096b95a9d89db43aee40f75fbe347c382e99eb16436873c294df3
container_end_page 6022
container_issue 8
container_start_page 6005
container_title Atmospheric chemistry and physics
container_volume 21
creator Stockwell, Chelsea E
Coggon, Matthew M
Gkatzelis, Georgios I
Ortega, John
McDonald, Brian C
Peischl, Jeff
Aikin, Kenneth
Gilman, Jessica B
Trainer, Michael
Warneke, Carsten
description The emissions of volatile organic compounds (VOCs) from volatile chemical products (VCPs) – specifically personal care products, cleaning agents, coatings, adhesives, and pesticides – are emerging as the largest source of petroleum-derived organic carbon in US cities. Previous work has shown that the ambient concentration of markers for most VCP categories correlates strongly with population density, except for VOCs predominantly originating from solvent- and water-borne coatings (e.g., parachlorobenzotrifluoride (PCBTF) and Texanol®, respectively). Instead, these enhancements were dominated by distinct emission events likely driven by industrial usage patterns, such as construction activity. In this work, the headspace of a variety of coating products was analyzed using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) and a gas chromatography (GC) preseparation front end to identify composition differences for various coating types (e.g., paints, primers, sealers, and stains). Evaporation experiments of several products showed high initial VOC emission rates, and for the length of these experiments, the majority of the VOC mass was emitted during the first few hours following application. The percentage of mass emitted as measured VOCs (
doi_str_mv 10.5194/acp-21-6005-2021
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_41ab602a22d84352a56402125f25fd2d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A659212806</galeid><doaj_id>oai_doaj_org_article_41ab602a22d84352a56402125f25fd2d</doaj_id><sourcerecordid>A659212806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-d77bfa63402e096b95a9d89db43aee40f75fbe347c382e99eb16436873c294df3</originalsourceid><addsrcrecordid>eNptUsuKFDEULUTBcca9ywJXLmrMuyrLYfDRMCA4o9twK7lp0lRX2iSt484PcOcf-iWmpsWZBkkgITnnXO65p2leUHIuqRavwe46RjtFiOwYYfRRc0LVQLqeM_H4wf1p8yznDSFMEipOmp-f4wQlTNjGtIY52NbG7S7uZ9fiNuQc4pxbn-K2zXH6inPpWqh_36Bg6saYZqyEKjCvc_v7x68DO4dSeTC1LniPCWeL-Y5WElhM9yWCq4rBBwsLIZ81TzxMGZ__PU-bT2_f3Fy-764-vFtdXlx1VgpVOtf3owfFBWFItBq1BO0G7UbBAVEQ30s_Ihe95QNDrXGkSnA19NwyLZznp83qoOsibMwuhS2k7yZCMHcP1QkDqQQ7oREURkUYMOYGwSUDqWpZyqSv2zFXtV4etHYpftljLmYT96k2nw2TVCpNleL3qDVU0TD7uFhRDbbmQkldBQeiKur8P6i6XJ2FjTP6OqhjwqsjQsUUvC1r2OdsVtcfj7HkgLUp5pzQ_2ucErNEyNQIGUbNEiGzRIj_AW4_urU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515691663</pqid></control><display><type>article</type><title>Volatile organic compound emissions from solvent- and water-borne coatings – compositional differences and tracer compound identifications</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Stockwell, Chelsea E ; Coggon, Matthew M ; Gkatzelis, Georgios I ; Ortega, John ; McDonald, Brian C ; Peischl, Jeff ; Aikin, Kenneth ; Gilman, Jessica B ; Trainer, Michael ; Warneke, Carsten</creator><creatorcontrib>Stockwell, Chelsea E ; Coggon, Matthew M ; Gkatzelis, Georgios I ; Ortega, John ; McDonald, Brian C ; Peischl, Jeff ; Aikin, Kenneth ; Gilman, Jessica B ; Trainer, Michael ; Warneke, Carsten</creatorcontrib><description>The emissions of volatile organic compounds (VOCs) from volatile chemical products (VCPs) – specifically personal care products, cleaning agents, coatings, adhesives, and pesticides – are emerging as the largest source of petroleum-derived organic carbon in US cities. Previous work has shown that the ambient concentration of markers for most VCP categories correlates strongly with population density, except for VOCs predominantly originating from solvent- and water-borne coatings (e.g., parachlorobenzotrifluoride (PCBTF) and Texanol®, respectively). Instead, these enhancements were dominated by distinct emission events likely driven by industrial usage patterns, such as construction activity. In this work, the headspace of a variety of coating products was analyzed using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) and a gas chromatography (GC) preseparation front end to identify composition differences for various coating types (e.g., paints, primers, sealers, and stains). Evaporation experiments of several products showed high initial VOC emission rates, and for the length of these experiments, the majority of the VOC mass was emitted during the first few hours following application. The percentage of mass emitted as measured VOCs (&lt;1 % to 83 %) mirrored the VOC content reported by the manufacturer (&lt;5 to 550 g L−1). Ambient and laboratory measurements, usage trends, and ingredients compiled from architectural coatings surveys show that both PCBTF and Texanol account for ∼10 % of the total VOC ingredient sales and, therefore, can be useful tracers for solvent- and water-borne coatings.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-21-6005-2021</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Carbon ; Chemical compounds ; Cleaning ; Cleaning agents ; Coatings ; Consumer products ; Emission ; Emissions ; Environmental aspects ; Evaporation ; Evaporation rate ; Experiments ; Gas chromatography ; Headspace ; Hydrocarbons ; Industrial applications ; Laboratories ; Mass ; Mass spectrometry ; Molecular weight ; Organic carbon ; Organic compounds ; Personal grooming ; Pesticides ; Petroleum ; Population density ; Primers ; Primers (coatings) ; Protective coatings ; Reaction time ; Sealers ; Solvents ; Surveys ; Toiletries ; Tracers ; Tracers (Biology) ; Trends ; Urban areas ; VOCs ; Volatile organic compound emissions ; Volatile organic compounds ; Volatility</subject><ispartof>Atmospheric chemistry and physics, 2021-04, Vol.21 (8), p.6005-6022</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-d77bfa63402e096b95a9d89db43aee40f75fbe347c382e99eb16436873c294df3</citedby><cites>FETCH-LOGICAL-c546t-d77bfa63402e096b95a9d89db43aee40f75fbe347c382e99eb16436873c294df3</cites><orcidid>0000-0002-9320-7101 ; 0000-0002-4608-3695 ; 0000-0003-3462-2126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2515691663/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2515691663?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Stockwell, Chelsea E</creatorcontrib><creatorcontrib>Coggon, Matthew M</creatorcontrib><creatorcontrib>Gkatzelis, Georgios I</creatorcontrib><creatorcontrib>Ortega, John</creatorcontrib><creatorcontrib>McDonald, Brian C</creatorcontrib><creatorcontrib>Peischl, Jeff</creatorcontrib><creatorcontrib>Aikin, Kenneth</creatorcontrib><creatorcontrib>Gilman, Jessica B</creatorcontrib><creatorcontrib>Trainer, Michael</creatorcontrib><creatorcontrib>Warneke, Carsten</creatorcontrib><title>Volatile organic compound emissions from solvent- and water-borne coatings – compositional differences and tracer compound identifications</title><title>Atmospheric chemistry and physics</title><description>The emissions of volatile organic compounds (VOCs) from volatile chemical products (VCPs) – specifically personal care products, cleaning agents, coatings, adhesives, and pesticides – are emerging as the largest source of petroleum-derived organic carbon in US cities. Previous work has shown that the ambient concentration of markers for most VCP categories correlates strongly with population density, except for VOCs predominantly originating from solvent- and water-borne coatings (e.g., parachlorobenzotrifluoride (PCBTF) and Texanol®, respectively). Instead, these enhancements were dominated by distinct emission events likely driven by industrial usage patterns, such as construction activity. In this work, the headspace of a variety of coating products was analyzed using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) and a gas chromatography (GC) preseparation front end to identify composition differences for various coating types (e.g., paints, primers, sealers, and stains). Evaporation experiments of several products showed high initial VOC emission rates, and for the length of these experiments, the majority of the VOC mass was emitted during the first few hours following application. The percentage of mass emitted as measured VOCs (&lt;1 % to 83 %) mirrored the VOC content reported by the manufacturer (&lt;5 to 550 g L−1). Ambient and laboratory measurements, usage trends, and ingredients compiled from architectural coatings surveys show that both PCBTF and Texanol account for ∼10 % of the total VOC ingredient sales and, therefore, can be useful tracers for solvent- and water-borne coatings.</description><subject>Carbon</subject><subject>Chemical compounds</subject><subject>Cleaning</subject><subject>Cleaning agents</subject><subject>Coatings</subject><subject>Consumer products</subject><subject>Emission</subject><subject>Emissions</subject><subject>Environmental aspects</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Experiments</subject><subject>Gas chromatography</subject><subject>Headspace</subject><subject>Hydrocarbons</subject><subject>Industrial applications</subject><subject>Laboratories</subject><subject>Mass</subject><subject>Mass spectrometry</subject><subject>Molecular weight</subject><subject>Organic carbon</subject><subject>Organic compounds</subject><subject>Personal grooming</subject><subject>Pesticides</subject><subject>Petroleum</subject><subject>Population density</subject><subject>Primers</subject><subject>Primers (coatings)</subject><subject>Protective coatings</subject><subject>Reaction time</subject><subject>Sealers</subject><subject>Solvents</subject><subject>Surveys</subject><subject>Toiletries</subject><subject>Tracers</subject><subject>Tracers (Biology)</subject><subject>Trends</subject><subject>Urban areas</subject><subject>VOCs</subject><subject>Volatile organic compound emissions</subject><subject>Volatile organic compounds</subject><subject>Volatility</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUsuKFDEULUTBcca9ywJXLmrMuyrLYfDRMCA4o9twK7lp0lRX2iSt484PcOcf-iWmpsWZBkkgITnnXO65p2leUHIuqRavwe46RjtFiOwYYfRRc0LVQLqeM_H4wf1p8yznDSFMEipOmp-f4wQlTNjGtIY52NbG7S7uZ9fiNuQc4pxbn-K2zXH6inPpWqh_36Bg6saYZqyEKjCvc_v7x68DO4dSeTC1LniPCWeL-Y5WElhM9yWCq4rBBwsLIZ81TzxMGZ__PU-bT2_f3Fy-764-vFtdXlx1VgpVOtf3owfFBWFItBq1BO0G7UbBAVEQ30s_Ihe95QNDrXGkSnA19NwyLZznp83qoOsibMwuhS2k7yZCMHcP1QkDqQQ7oREURkUYMOYGwSUDqWpZyqSv2zFXtV4etHYpftljLmYT96k2nw2TVCpNleL3qDVU0TD7uFhRDbbmQkldBQeiKur8P6i6XJ2FjTP6OqhjwqsjQsUUvC1r2OdsVtcfj7HkgLUp5pzQ_2ucErNEyNQIGUbNEiGzRIj_AW4_urU</recordid><startdate>20210421</startdate><enddate>20210421</enddate><creator>Stockwell, Chelsea E</creator><creator>Coggon, Matthew M</creator><creator>Gkatzelis, Georgios I</creator><creator>Ortega, John</creator><creator>McDonald, Brian C</creator><creator>Peischl, Jeff</creator><creator>Aikin, Kenneth</creator><creator>Gilman, Jessica B</creator><creator>Trainer, Michael</creator><creator>Warneke, Carsten</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9320-7101</orcidid><orcidid>https://orcid.org/0000-0002-4608-3695</orcidid><orcidid>https://orcid.org/0000-0003-3462-2126</orcidid></search><sort><creationdate>20210421</creationdate><title>Volatile organic compound emissions from solvent- and water-borne coatings – compositional differences and tracer compound identifications</title><author>Stockwell, Chelsea E ; Coggon, Matthew M ; Gkatzelis, Georgios I ; Ortega, John ; McDonald, Brian C ; Peischl, Jeff ; Aikin, Kenneth ; Gilman, Jessica B ; Trainer, Michael ; Warneke, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-d77bfa63402e096b95a9d89db43aee40f75fbe347c382e99eb16436873c294df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Chemical compounds</topic><topic>Cleaning</topic><topic>Cleaning agents</topic><topic>Coatings</topic><topic>Consumer products</topic><topic>Emission</topic><topic>Emissions</topic><topic>Environmental aspects</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Experiments</topic><topic>Gas chromatography</topic><topic>Headspace</topic><topic>Hydrocarbons</topic><topic>Industrial applications</topic><topic>Laboratories</topic><topic>Mass</topic><topic>Mass spectrometry</topic><topic>Molecular weight</topic><topic>Organic carbon</topic><topic>Organic compounds</topic><topic>Personal grooming</topic><topic>Pesticides</topic><topic>Petroleum</topic><topic>Population density</topic><topic>Primers</topic><topic>Primers (coatings)</topic><topic>Protective coatings</topic><topic>Reaction time</topic><topic>Sealers</topic><topic>Solvents</topic><topic>Surveys</topic><topic>Toiletries</topic><topic>Tracers</topic><topic>Tracers (Biology)</topic><topic>Trends</topic><topic>Urban areas</topic><topic>VOCs</topic><topic>Volatile organic compound emissions</topic><topic>Volatile organic compounds</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stockwell, Chelsea E</creatorcontrib><creatorcontrib>Coggon, Matthew M</creatorcontrib><creatorcontrib>Gkatzelis, Georgios I</creatorcontrib><creatorcontrib>Ortega, John</creatorcontrib><creatorcontrib>McDonald, Brian C</creatorcontrib><creatorcontrib>Peischl, Jeff</creatorcontrib><creatorcontrib>Aikin, Kenneth</creatorcontrib><creatorcontrib>Gilman, Jessica B</creatorcontrib><creatorcontrib>Trainer, Michael</creatorcontrib><creatorcontrib>Warneke, Carsten</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stockwell, Chelsea E</au><au>Coggon, Matthew M</au><au>Gkatzelis, Georgios I</au><au>Ortega, John</au><au>McDonald, Brian C</au><au>Peischl, Jeff</au><au>Aikin, Kenneth</au><au>Gilman, Jessica B</au><au>Trainer, Michael</au><au>Warneke, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volatile organic compound emissions from solvent- and water-borne coatings – compositional differences and tracer compound identifications</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2021-04-21</date><risdate>2021</risdate><volume>21</volume><issue>8</issue><spage>6005</spage><epage>6022</epage><pages>6005-6022</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>The emissions of volatile organic compounds (VOCs) from volatile chemical products (VCPs) – specifically personal care products, cleaning agents, coatings, adhesives, and pesticides – are emerging as the largest source of petroleum-derived organic carbon in US cities. Previous work has shown that the ambient concentration of markers for most VCP categories correlates strongly with population density, except for VOCs predominantly originating from solvent- and water-borne coatings (e.g., parachlorobenzotrifluoride (PCBTF) and Texanol®, respectively). Instead, these enhancements were dominated by distinct emission events likely driven by industrial usage patterns, such as construction activity. In this work, the headspace of a variety of coating products was analyzed using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) and a gas chromatography (GC) preseparation front end to identify composition differences for various coating types (e.g., paints, primers, sealers, and stains). Evaporation experiments of several products showed high initial VOC emission rates, and for the length of these experiments, the majority of the VOC mass was emitted during the first few hours following application. The percentage of mass emitted as measured VOCs (&lt;1 % to 83 %) mirrored the VOC content reported by the manufacturer (&lt;5 to 550 g L−1). Ambient and laboratory measurements, usage trends, and ingredients compiled from architectural coatings surveys show that both PCBTF and Texanol account for ∼10 % of the total VOC ingredient sales and, therefore, can be useful tracers for solvent- and water-borne coatings.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-21-6005-2021</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9320-7101</orcidid><orcidid>https://orcid.org/0000-0002-4608-3695</orcidid><orcidid>https://orcid.org/0000-0003-3462-2126</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1680-7324
ispartof Atmospheric chemistry and physics, 2021-04, Vol.21 (8), p.6005-6022
issn 1680-7324
1680-7316
1680-7324
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_41ab602a22d84352a56402125f25fd2d
source Publicly Available Content Database; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection
subjects Carbon
Chemical compounds
Cleaning
Cleaning agents
Coatings
Consumer products
Emission
Emissions
Environmental aspects
Evaporation
Evaporation rate
Experiments
Gas chromatography
Headspace
Hydrocarbons
Industrial applications
Laboratories
Mass
Mass spectrometry
Molecular weight
Organic carbon
Organic compounds
Personal grooming
Pesticides
Petroleum
Population density
Primers
Primers (coatings)
Protective coatings
Reaction time
Sealers
Solvents
Surveys
Toiletries
Tracers
Tracers (Biology)
Trends
Urban areas
VOCs
Volatile organic compound emissions
Volatile organic compounds
Volatility
title Volatile organic compound emissions from solvent- and water-borne coatings – compositional differences and tracer compound identifications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volatile%20organic%20compound%20emissions%20from%20solvent-%20and%20water-borne%20coatings%20%E2%80%93%20compositional%20differences%20and%20tracer%20compound%20identifications&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Stockwell,%20Chelsea%20E&rft.date=2021-04-21&rft.volume=21&rft.issue=8&rft.spage=6005&rft.epage=6022&rft.pages=6005-6022&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-21-6005-2021&rft_dat=%3Cgale_doaj_%3EA659212806%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c546t-d77bfa63402e096b95a9d89db43aee40f75fbe347c382e99eb16436873c294df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2515691663&rft_id=info:pmid/&rft_galeid=A659212806&rfr_iscdi=true