Loading…
Volatile organic compound emissions from solvent- and water-borne coatings – compositional differences and tracer compound identifications
The emissions of volatile organic compounds (VOCs) from volatile chemical products (VCPs) – specifically personal care products, cleaning agents, coatings, adhesives, and pesticides – are emerging as the largest source of petroleum-derived organic carbon in US cities. Previous work has shown that th...
Saved in:
Published in: | Atmospheric chemistry and physics 2021-04, Vol.21 (8), p.6005-6022 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c546t-d77bfa63402e096b95a9d89db43aee40f75fbe347c382e99eb16436873c294df3 |
---|---|
cites | cdi_FETCH-LOGICAL-c546t-d77bfa63402e096b95a9d89db43aee40f75fbe347c382e99eb16436873c294df3 |
container_end_page | 6022 |
container_issue | 8 |
container_start_page | 6005 |
container_title | Atmospheric chemistry and physics |
container_volume | 21 |
creator | Stockwell, Chelsea E Coggon, Matthew M Gkatzelis, Georgios I Ortega, John McDonald, Brian C Peischl, Jeff Aikin, Kenneth Gilman, Jessica B Trainer, Michael Warneke, Carsten |
description | The emissions of volatile organic compounds (VOCs) from
volatile chemical products (VCPs) – specifically personal care products,
cleaning agents, coatings, adhesives, and pesticides – are emerging as the
largest source of petroleum-derived organic carbon in US cities. Previous
work has shown that the ambient concentration of markers for most VCP
categories correlates strongly with population density, except for VOCs
predominantly originating from solvent- and water-borne coatings (e.g.,
parachlorobenzotrifluoride (PCBTF) and Texanol®, respectively). Instead, these enhancements were dominated by distinct emission events likely driven by industrial usage patterns, such as
construction activity. In this work, the headspace of a variety of coating
products was analyzed using a proton-transfer-reaction time-of-flight mass
spectrometer (PTR-ToF-MS) and a gas chromatography (GC) preseparation
front end to identify composition differences for various coating types
(e.g., paints, primers, sealers, and stains). Evaporation experiments of
several products showed high initial VOC emission rates, and for the length
of these experiments, the majority of the VOC mass was emitted during the
first few hours following application. The percentage of mass emitted as
measured VOCs ( |
doi_str_mv | 10.5194/acp-21-6005-2021 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_41ab602a22d84352a56402125f25fd2d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A659212806</galeid><doaj_id>oai_doaj_org_article_41ab602a22d84352a56402125f25fd2d</doaj_id><sourcerecordid>A659212806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-d77bfa63402e096b95a9d89db43aee40f75fbe347c382e99eb16436873c294df3</originalsourceid><addsrcrecordid>eNptUsuKFDEULUTBcca9ywJXLmrMuyrLYfDRMCA4o9twK7lp0lRX2iSt484PcOcf-iWmpsWZBkkgITnnXO65p2leUHIuqRavwe46RjtFiOwYYfRRc0LVQLqeM_H4wf1p8yznDSFMEipOmp-f4wQlTNjGtIY52NbG7S7uZ9fiNuQc4pxbn-K2zXH6inPpWqh_36Bg6saYZqyEKjCvc_v7x68DO4dSeTC1LniPCWeL-Y5WElhM9yWCq4rBBwsLIZ81TzxMGZ__PU-bT2_f3Fy-764-vFtdXlx1VgpVOtf3owfFBWFItBq1BO0G7UbBAVEQ30s_Ihe95QNDrXGkSnA19NwyLZznp83qoOsibMwuhS2k7yZCMHcP1QkDqQQ7oREURkUYMOYGwSUDqWpZyqSv2zFXtV4etHYpftljLmYT96k2nw2TVCpNleL3qDVU0TD7uFhRDbbmQkldBQeiKur8P6i6XJ2FjTP6OqhjwqsjQsUUvC1r2OdsVtcfj7HkgLUp5pzQ_2ucErNEyNQIGUbNEiGzRIj_AW4_urU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515691663</pqid></control><display><type>article</type><title>Volatile organic compound emissions from solvent- and water-borne coatings – compositional differences and tracer compound identifications</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Stockwell, Chelsea E ; Coggon, Matthew M ; Gkatzelis, Georgios I ; Ortega, John ; McDonald, Brian C ; Peischl, Jeff ; Aikin, Kenneth ; Gilman, Jessica B ; Trainer, Michael ; Warneke, Carsten</creator><creatorcontrib>Stockwell, Chelsea E ; Coggon, Matthew M ; Gkatzelis, Georgios I ; Ortega, John ; McDonald, Brian C ; Peischl, Jeff ; Aikin, Kenneth ; Gilman, Jessica B ; Trainer, Michael ; Warneke, Carsten</creatorcontrib><description>The emissions of volatile organic compounds (VOCs) from
volatile chemical products (VCPs) – specifically personal care products,
cleaning agents, coatings, adhesives, and pesticides – are emerging as the
largest source of petroleum-derived organic carbon in US cities. Previous
work has shown that the ambient concentration of markers for most VCP
categories correlates strongly with population density, except for VOCs
predominantly originating from solvent- and water-borne coatings (e.g.,
parachlorobenzotrifluoride (PCBTF) and Texanol®, respectively). Instead, these enhancements were dominated by distinct emission events likely driven by industrial usage patterns, such as
construction activity. In this work, the headspace of a variety of coating
products was analyzed using a proton-transfer-reaction time-of-flight mass
spectrometer (PTR-ToF-MS) and a gas chromatography (GC) preseparation
front end to identify composition differences for various coating types
(e.g., paints, primers, sealers, and stains). Evaporation experiments of
several products showed high initial VOC emission rates, and for the length
of these experiments, the majority of the VOC mass was emitted during the
first few hours following application. The percentage of mass emitted as
measured VOCs (<1 % to 83 %) mirrored the VOC content reported by
the manufacturer (<5 to 550 g L−1). Ambient and laboratory
measurements, usage trends, and ingredients compiled from architectural
coatings surveys show that both PCBTF and Texanol account for ∼10 % of the total VOC ingredient sales and, therefore, can be useful tracers for solvent- and water-borne coatings.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-21-6005-2021</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Carbon ; Chemical compounds ; Cleaning ; Cleaning agents ; Coatings ; Consumer products ; Emission ; Emissions ; Environmental aspects ; Evaporation ; Evaporation rate ; Experiments ; Gas chromatography ; Headspace ; Hydrocarbons ; Industrial applications ; Laboratories ; Mass ; Mass spectrometry ; Molecular weight ; Organic carbon ; Organic compounds ; Personal grooming ; Pesticides ; Petroleum ; Population density ; Primers ; Primers (coatings) ; Protective coatings ; Reaction time ; Sealers ; Solvents ; Surveys ; Toiletries ; Tracers ; Tracers (Biology) ; Trends ; Urban areas ; VOCs ; Volatile organic compound emissions ; Volatile organic compounds ; Volatility</subject><ispartof>Atmospheric chemistry and physics, 2021-04, Vol.21 (8), p.6005-6022</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-d77bfa63402e096b95a9d89db43aee40f75fbe347c382e99eb16436873c294df3</citedby><cites>FETCH-LOGICAL-c546t-d77bfa63402e096b95a9d89db43aee40f75fbe347c382e99eb16436873c294df3</cites><orcidid>0000-0002-9320-7101 ; 0000-0002-4608-3695 ; 0000-0003-3462-2126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2515691663/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2515691663?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Stockwell, Chelsea E</creatorcontrib><creatorcontrib>Coggon, Matthew M</creatorcontrib><creatorcontrib>Gkatzelis, Georgios I</creatorcontrib><creatorcontrib>Ortega, John</creatorcontrib><creatorcontrib>McDonald, Brian C</creatorcontrib><creatorcontrib>Peischl, Jeff</creatorcontrib><creatorcontrib>Aikin, Kenneth</creatorcontrib><creatorcontrib>Gilman, Jessica B</creatorcontrib><creatorcontrib>Trainer, Michael</creatorcontrib><creatorcontrib>Warneke, Carsten</creatorcontrib><title>Volatile organic compound emissions from solvent- and water-borne coatings – compositional differences and tracer compound identifications</title><title>Atmospheric chemistry and physics</title><description>The emissions of volatile organic compounds (VOCs) from
volatile chemical products (VCPs) – specifically personal care products,
cleaning agents, coatings, adhesives, and pesticides – are emerging as the
largest source of petroleum-derived organic carbon in US cities. Previous
work has shown that the ambient concentration of markers for most VCP
categories correlates strongly with population density, except for VOCs
predominantly originating from solvent- and water-borne coatings (e.g.,
parachlorobenzotrifluoride (PCBTF) and Texanol®, respectively). Instead, these enhancements were dominated by distinct emission events likely driven by industrial usage patterns, such as
construction activity. In this work, the headspace of a variety of coating
products was analyzed using a proton-transfer-reaction time-of-flight mass
spectrometer (PTR-ToF-MS) and a gas chromatography (GC) preseparation
front end to identify composition differences for various coating types
(e.g., paints, primers, sealers, and stains). Evaporation experiments of
several products showed high initial VOC emission rates, and for the length
of these experiments, the majority of the VOC mass was emitted during the
first few hours following application. The percentage of mass emitted as
measured VOCs (<1 % to 83 %) mirrored the VOC content reported by
the manufacturer (<5 to 550 g L−1). Ambient and laboratory
measurements, usage trends, and ingredients compiled from architectural
coatings surveys show that both PCBTF and Texanol account for ∼10 % of the total VOC ingredient sales and, therefore, can be useful tracers for solvent- and water-borne coatings.</description><subject>Carbon</subject><subject>Chemical compounds</subject><subject>Cleaning</subject><subject>Cleaning agents</subject><subject>Coatings</subject><subject>Consumer products</subject><subject>Emission</subject><subject>Emissions</subject><subject>Environmental aspects</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Experiments</subject><subject>Gas chromatography</subject><subject>Headspace</subject><subject>Hydrocarbons</subject><subject>Industrial applications</subject><subject>Laboratories</subject><subject>Mass</subject><subject>Mass spectrometry</subject><subject>Molecular weight</subject><subject>Organic carbon</subject><subject>Organic compounds</subject><subject>Personal grooming</subject><subject>Pesticides</subject><subject>Petroleum</subject><subject>Population density</subject><subject>Primers</subject><subject>Primers (coatings)</subject><subject>Protective coatings</subject><subject>Reaction time</subject><subject>Sealers</subject><subject>Solvents</subject><subject>Surveys</subject><subject>Toiletries</subject><subject>Tracers</subject><subject>Tracers (Biology)</subject><subject>Trends</subject><subject>Urban areas</subject><subject>VOCs</subject><subject>Volatile organic compound emissions</subject><subject>Volatile organic compounds</subject><subject>Volatility</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUsuKFDEULUTBcca9ywJXLmrMuyrLYfDRMCA4o9twK7lp0lRX2iSt484PcOcf-iWmpsWZBkkgITnnXO65p2leUHIuqRavwe46RjtFiOwYYfRRc0LVQLqeM_H4wf1p8yznDSFMEipOmp-f4wQlTNjGtIY52NbG7S7uZ9fiNuQc4pxbn-K2zXH6inPpWqh_36Bg6saYZqyEKjCvc_v7x68DO4dSeTC1LniPCWeL-Y5WElhM9yWCq4rBBwsLIZ81TzxMGZ__PU-bT2_f3Fy-764-vFtdXlx1VgpVOtf3owfFBWFItBq1BO0G7UbBAVEQ30s_Ihe95QNDrXGkSnA19NwyLZznp83qoOsibMwuhS2k7yZCMHcP1QkDqQQ7oREURkUYMOYGwSUDqWpZyqSv2zFXtV4etHYpftljLmYT96k2nw2TVCpNleL3qDVU0TD7uFhRDbbmQkldBQeiKur8P6i6XJ2FjTP6OqhjwqsjQsUUvC1r2OdsVtcfj7HkgLUp5pzQ_2ucErNEyNQIGUbNEiGzRIj_AW4_urU</recordid><startdate>20210421</startdate><enddate>20210421</enddate><creator>Stockwell, Chelsea E</creator><creator>Coggon, Matthew M</creator><creator>Gkatzelis, Georgios I</creator><creator>Ortega, John</creator><creator>McDonald, Brian C</creator><creator>Peischl, Jeff</creator><creator>Aikin, Kenneth</creator><creator>Gilman, Jessica B</creator><creator>Trainer, Michael</creator><creator>Warneke, Carsten</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9320-7101</orcidid><orcidid>https://orcid.org/0000-0002-4608-3695</orcidid><orcidid>https://orcid.org/0000-0003-3462-2126</orcidid></search><sort><creationdate>20210421</creationdate><title>Volatile organic compound emissions from solvent- and water-borne coatings – compositional differences and tracer compound identifications</title><author>Stockwell, Chelsea E ; Coggon, Matthew M ; Gkatzelis, Georgios I ; Ortega, John ; McDonald, Brian C ; Peischl, Jeff ; Aikin, Kenneth ; Gilman, Jessica B ; Trainer, Michael ; Warneke, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-d77bfa63402e096b95a9d89db43aee40f75fbe347c382e99eb16436873c294df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Chemical compounds</topic><topic>Cleaning</topic><topic>Cleaning agents</topic><topic>Coatings</topic><topic>Consumer products</topic><topic>Emission</topic><topic>Emissions</topic><topic>Environmental aspects</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Experiments</topic><topic>Gas chromatography</topic><topic>Headspace</topic><topic>Hydrocarbons</topic><topic>Industrial applications</topic><topic>Laboratories</topic><topic>Mass</topic><topic>Mass spectrometry</topic><topic>Molecular weight</topic><topic>Organic carbon</topic><topic>Organic compounds</topic><topic>Personal grooming</topic><topic>Pesticides</topic><topic>Petroleum</topic><topic>Population density</topic><topic>Primers</topic><topic>Primers (coatings)</topic><topic>Protective coatings</topic><topic>Reaction time</topic><topic>Sealers</topic><topic>Solvents</topic><topic>Surveys</topic><topic>Toiletries</topic><topic>Tracers</topic><topic>Tracers (Biology)</topic><topic>Trends</topic><topic>Urban areas</topic><topic>VOCs</topic><topic>Volatile organic compound emissions</topic><topic>Volatile organic compounds</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stockwell, Chelsea E</creatorcontrib><creatorcontrib>Coggon, Matthew M</creatorcontrib><creatorcontrib>Gkatzelis, Georgios I</creatorcontrib><creatorcontrib>Ortega, John</creatorcontrib><creatorcontrib>McDonald, Brian C</creatorcontrib><creatorcontrib>Peischl, Jeff</creatorcontrib><creatorcontrib>Aikin, Kenneth</creatorcontrib><creatorcontrib>Gilman, Jessica B</creatorcontrib><creatorcontrib>Trainer, Michael</creatorcontrib><creatorcontrib>Warneke, Carsten</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stockwell, Chelsea E</au><au>Coggon, Matthew M</au><au>Gkatzelis, Georgios I</au><au>Ortega, John</au><au>McDonald, Brian C</au><au>Peischl, Jeff</au><au>Aikin, Kenneth</au><au>Gilman, Jessica B</au><au>Trainer, Michael</au><au>Warneke, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volatile organic compound emissions from solvent- and water-borne coatings – compositional differences and tracer compound identifications</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2021-04-21</date><risdate>2021</risdate><volume>21</volume><issue>8</issue><spage>6005</spage><epage>6022</epage><pages>6005-6022</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>The emissions of volatile organic compounds (VOCs) from
volatile chemical products (VCPs) – specifically personal care products,
cleaning agents, coatings, adhesives, and pesticides – are emerging as the
largest source of petroleum-derived organic carbon in US cities. Previous
work has shown that the ambient concentration of markers for most VCP
categories correlates strongly with population density, except for VOCs
predominantly originating from solvent- and water-borne coatings (e.g.,
parachlorobenzotrifluoride (PCBTF) and Texanol®, respectively). Instead, these enhancements were dominated by distinct emission events likely driven by industrial usage patterns, such as
construction activity. In this work, the headspace of a variety of coating
products was analyzed using a proton-transfer-reaction time-of-flight mass
spectrometer (PTR-ToF-MS) and a gas chromatography (GC) preseparation
front end to identify composition differences for various coating types
(e.g., paints, primers, sealers, and stains). Evaporation experiments of
several products showed high initial VOC emission rates, and for the length
of these experiments, the majority of the VOC mass was emitted during the
first few hours following application. The percentage of mass emitted as
measured VOCs (<1 % to 83 %) mirrored the VOC content reported by
the manufacturer (<5 to 550 g L−1). Ambient and laboratory
measurements, usage trends, and ingredients compiled from architectural
coatings surveys show that both PCBTF and Texanol account for ∼10 % of the total VOC ingredient sales and, therefore, can be useful tracers for solvent- and water-borne coatings.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-21-6005-2021</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9320-7101</orcidid><orcidid>https://orcid.org/0000-0002-4608-3695</orcidid><orcidid>https://orcid.org/0000-0003-3462-2126</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1680-7324 |
ispartof | Atmospheric chemistry and physics, 2021-04, Vol.21 (8), p.6005-6022 |
issn | 1680-7324 1680-7316 1680-7324 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_41ab602a22d84352a56402125f25fd2d |
source | Publicly Available Content Database; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection |
subjects | Carbon Chemical compounds Cleaning Cleaning agents Coatings Consumer products Emission Emissions Environmental aspects Evaporation Evaporation rate Experiments Gas chromatography Headspace Hydrocarbons Industrial applications Laboratories Mass Mass spectrometry Molecular weight Organic carbon Organic compounds Personal grooming Pesticides Petroleum Population density Primers Primers (coatings) Protective coatings Reaction time Sealers Solvents Surveys Toiletries Tracers Tracers (Biology) Trends Urban areas VOCs Volatile organic compound emissions Volatile organic compounds Volatility |
title | Volatile organic compound emissions from solvent- and water-borne coatings – compositional differences and tracer compound identifications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volatile%20organic%20compound%20emissions%20from%20solvent-%20and%20water-borne%20coatings%20%E2%80%93%20compositional%20differences%20and%20tracer%20compound%20identifications&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Stockwell,%20Chelsea%20E&rft.date=2021-04-21&rft.volume=21&rft.issue=8&rft.spage=6005&rft.epage=6022&rft.pages=6005-6022&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-21-6005-2021&rft_dat=%3Cgale_doaj_%3EA659212806%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c546t-d77bfa63402e096b95a9d89db43aee40f75fbe347c382e99eb16436873c294df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2515691663&rft_id=info:pmid/&rft_galeid=A659212806&rfr_iscdi=true |