Loading…

Performance Characterization of the Smartphone Video Guidance Sensor as Vision-Based Positioning System

The Smartphone Video Guidance Sensor (SVGS) is a vision-based sensor that computes the six-state position and orientation vector of a target relative to a coordinate system attached to a smartphone. This paper presents accuracy-characterization measurements of the Smartphone Video Guidance Sensor (S...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2020-09, Vol.20 (18), p.5299
Main Authors: Hariri, Nasir, Gutierrez, Hector, Rakoczy, John, Howard, Richard, Bertaska, Ivan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Smartphone Video Guidance Sensor (SVGS) is a vision-based sensor that computes the six-state position and orientation vector of a target relative to a coordinate system attached to a smartphone. This paper presents accuracy-characterization measurements of the Smartphone Video Guidance Sensor (SVGS) to assess its performance as a position and attitude estimator, evaluating its accuracy in linear and angular motion for different velocities and various types of targets based on the mean and standard deviation errors between SVGS estimates and known motion profiles, in both linear and angular motions. The study also examines the effects of target velocity and sampling rate on the overall performance of SVGS and provides an overall assessment of SVGS’ performance as a position/attitude estimator. While the error metrics are dependent on range and camera resolution, the results of this paper can be scaled to other operational conditions by scaling the blob size in pixels (the light markers identified in the images) relative to the total resolution (number of pixels) of the image. The error statistics of SVGS enable its incorporation (by synthesis of a Kalman estimator) in advanced motion-control systems for navigation and guidance.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20185299