Loading…

Safety Assessment of Gas Pipelines Crossing River through Hydrodynamic Analysis

Gas pipelines are buried and installed across rivers to supply the gas necessary for daily life. When crossing rivers, gas pipelines are typically installed on bridges; however, when installation on bridges is not feasible, the pipelines are buried in riverbeds. This study utilized both a one-dimens...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2024-10, Vol.14 (19), p.9147
Main Authors: Eum, Tae Soo, Shin, Eun Taek, Park, Jong Pyo, Song, Chang Geun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gas pipelines are buried and installed across rivers to supply the gas necessary for daily life. When crossing rivers, gas pipelines are typically installed on bridges; however, when installation on bridges is not feasible, the pipelines are buried in riverbeds. This study utilized both a one-dimensional model (HEC-RAS) and two-dimensional models (SMS) to simulate river flow and estimate the potential for scour and deposition around buried pipelines. The hydrodynamic simulations considered critical factors, including sediment transport, river discharge, and geological characteristics, to derive the maximum scour depth and assess the risk of pipeline exposure. The findings from the long-term and short-term simulations confirmed that riverbed changes due to natural hydrological events do not exceed the minimum burial depth standards, thereby ensuring pipeline safety. In addition, the study proposed specific reinforcement measures tailored to local site conditions, addressing concerns of continuous subsidence and ensuring long-term structural stability. This research offers important insights into pipeline risk management and contributes to the development of more effective regulatory standards for gas pipelines buried in riverbeds, enhancing both their safety and environmental sustainability
ISSN:2076-3417
2076-3417
DOI:10.3390/app14199147