Loading…

Co‐catabolism of arginine and succinate drives symbiotic nitrogen fixation

Biological nitrogen fixation emerging from the symbiosis between bacteria and crop plants holds promise to increase the sustainability of agriculture. One of the biggest hurdles for the engineering of nitrogen‐fixing organisms is an incomplete knowledge of metabolic interactions between microbe and...

Full description

Saved in:
Bibliographic Details
Published in:Molecular systems biology 2020-06, Vol.16 (6), p.e9419-n/a
Main Authors: Flores‐Tinoco, Carlos Eduardo, Tschan, Flavia, Fuhrer, Tobias, Margot, Céline, Sauer, Uwe, Christen, Matthias, Christen, Beat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6489-65d71a92f6bdf4b4d13e567d245190ae1e059cc26e709df9afac7e9285d236b73
cites cdi_FETCH-LOGICAL-c6489-65d71a92f6bdf4b4d13e567d245190ae1e059cc26e709df9afac7e9285d236b73
container_end_page n/a
container_issue 6
container_start_page e9419
container_title Molecular systems biology
container_volume 16
creator Flores‐Tinoco, Carlos Eduardo
Tschan, Flavia
Fuhrer, Tobias
Margot, Céline
Sauer, Uwe
Christen, Matthias
Christen, Beat
description Biological nitrogen fixation emerging from the symbiosis between bacteria and crop plants holds promise to increase the sustainability of agriculture. One of the biggest hurdles for the engineering of nitrogen‐fixing organisms is an incomplete knowledge of metabolic interactions between microbe and plant. In contrast to the previously assumed supply of only succinate, we describe here the CATCH‐N cycle as a novel metabolic pathway that co‐catabolizes plant‐provided arginine and succinate to drive the energy‐demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia. Using systems biology, isotope labeling studies and transposon sequencing in conjunction with biochemical characterization, we uncovered highly redundant network components of the CATCH‐N cycle including transaminases that interlink the co‐catabolism of arginine and succinate. The CATCH‐N cycle uses N 2 as an additional sink for reductant and therefore delivers up to 25% higher yields of nitrogen than classical arginine catabolism—two alanines and three ammonium ions are secreted for each input of arginine and succinate. We argue that the CATCH‐N cycle has evolved as part of a synergistic interaction to sustain bacterial metabolism in the microoxic and highly acid environment of symbiosomes. Thus, the CATCH‐N cycle entangles the metabolism of both partners to promote symbiosis. Our results provide a theoretical framework and metabolic blueprint for the rational design of plants and plant‐associated organisms with new properties to improve nitrogen fixation. Synopsis This study challenges the current model of nitrogen exchange in rhizobia‐legumes symbiosis and describes the CATCH‐N cycle, which operates on the provision of arginine and succinate by the plant as part of a metabolic network driving symbiotic nitrogen fixation in rhizobia. The CATCH‐N cycle co‐catabolises plant‐provided arginine and succinate to drive the energy‐demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia. The CATCH‐N cycle functions as an effective mechanism to promote the survival of bacteroids within infected plant cells and results in a net gain of assimilated nitrogen that subsequently amplifies the plant's arginine biosynthesis capacity. The study represents an important step towards the rational engineering of artificial nitrogen‐fixing microbes. Graphical Abstract This study challenges the current model of nitrogen exchange in rhizobia‐legumes symbiosis and describes the CATCH‐
doi_str_mv 10.15252/msb.20199419
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_41c66b9f4ef84fcea8980056e496d127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_41c66b9f4ef84fcea8980056e496d127</doaj_id><sourcerecordid>2417968949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6489-65d71a92f6bdf4b4d13e567d245190ae1e059cc26e709df9afac7e9285d236b73</originalsourceid><addsrcrecordid>eNp9ks9u1DAQhyMEoqVw5IoiuHDZxeM4jn1BKiv-VFrEAThbjj3eepXYxU4Ke-MReEaehLRplxahnmzZ33wej35F8RTIEmpa01d9bpeUgJQM5L3iEBrGFoxKev_G_qB4lPOWkEqAoA-Lg4oySTiBw2K9ir9__jJ60G3sfO7L6EqdNj74gKUOtsyjMT7oAUub_DnmMu_61sfBmzL4IcUNhtL5H3rwMTwuHjjdZXxytR4VX9-9_bL6sFh_en-yOl4vDGdCLnhtG9CSOt5ax1pmocKaN5ayGiTRCEhqaQzl2BBpndROmwYlFbWlFW-b6qg4mb026q06S77Xaaei9uryIKaN0mnqsEPFwHDeSsfQCeYMaiEFITVHJrkFeuF6PbvOxrZHazAMSXe3pLdvgj9Vm3iuGsoFrcUkeD4LYh68ysYPaE5NDAHNoEAApzWboJdXr6T4bcQ8qN5ng12nA8YxK8qIBAlAL9AX_6DbOKYwzXOiWANSMErvpqCRXEgmJ2oxUybFnBO6_b-AqMv4qCk-6jo-E__s5jD29HVeJoDNwHff4e5um_r4-c3eu5zL8lQRNpj-dvv_Rv4APanfFA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417968949</pqid></control><display><type>article</type><title>Co‐catabolism of arginine and succinate drives symbiotic nitrogen fixation</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (PMC)</source><source>Free Full-Text Journals in Chemistry</source><creator>Flores‐Tinoco, Carlos Eduardo ; Tschan, Flavia ; Fuhrer, Tobias ; Margot, Céline ; Sauer, Uwe ; Christen, Matthias ; Christen, Beat</creator><creatorcontrib>Flores‐Tinoco, Carlos Eduardo ; Tschan, Flavia ; Fuhrer, Tobias ; Margot, Céline ; Sauer, Uwe ; Christen, Matthias ; Christen, Beat ; Univ. of California, Berkeley, CA (United States)</creatorcontrib><description>Biological nitrogen fixation emerging from the symbiosis between bacteria and crop plants holds promise to increase the sustainability of agriculture. One of the biggest hurdles for the engineering of nitrogen‐fixing organisms is an incomplete knowledge of metabolic interactions between microbe and plant. In contrast to the previously assumed supply of only succinate, we describe here the CATCH‐N cycle as a novel metabolic pathway that co‐catabolizes plant‐provided arginine and succinate to drive the energy‐demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia. Using systems biology, isotope labeling studies and transposon sequencing in conjunction with biochemical characterization, we uncovered highly redundant network components of the CATCH‐N cycle including transaminases that interlink the co‐catabolism of arginine and succinate. The CATCH‐N cycle uses N 2 as an additional sink for reductant and therefore delivers up to 25% higher yields of nitrogen than classical arginine catabolism—two alanines and three ammonium ions are secreted for each input of arginine and succinate. We argue that the CATCH‐N cycle has evolved as part of a synergistic interaction to sustain bacterial metabolism in the microoxic and highly acid environment of symbiosomes. Thus, the CATCH‐N cycle entangles the metabolism of both partners to promote symbiosis. Our results provide a theoretical framework and metabolic blueprint for the rational design of plants and plant‐associated organisms with new properties to improve nitrogen fixation. Synopsis This study challenges the current model of nitrogen exchange in rhizobia‐legumes symbiosis and describes the CATCH‐N cycle, which operates on the provision of arginine and succinate by the plant as part of a metabolic network driving symbiotic nitrogen fixation in rhizobia. The CATCH‐N cycle co‐catabolises plant‐provided arginine and succinate to drive the energy‐demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia. The CATCH‐N cycle functions as an effective mechanism to promote the survival of bacteroids within infected plant cells and results in a net gain of assimilated nitrogen that subsequently amplifies the plant's arginine biosynthesis capacity. The study represents an important step towards the rational engineering of artificial nitrogen‐fixing microbes. Graphical Abstract This study challenges the current model of nitrogen exchange in rhizobia‐legumes symbiosis and describes the CATCH‐N cycle, which operates on the provision of arginine and succinate by the plant as part of a metabolic network driving symbiotic nitrogen fixation in rhizobia.</description><identifier>ISSN: 1744-4292</identifier><identifier>EISSN: 1744-4292</identifier><identifier>DOI: 10.15252/msb.20199419</identifier><identifier>PMID: 32490601</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adenosine Triphosphate - biosynthesis ; Adenosine Triphosphate - metabolism ; Agricultural engineering ; Amination ; Amino acids ; Ammonium ; Arginase - metabolism ; Arginine ; Arginine - metabolism ; Bacteria ; BASIC BIOLOGICAL SCIENCES ; biological nitrogen fixation ; Bradyrhizobium - genetics ; Bradyrhizobium - physiology ; Bradyrhizobium diazoefficiens ; Carbon Isotopes ; Catabolism ; CATCH‐N cycle ; Climate change ; Dehydrogenases ; DNA Transposable Elements - genetics ; Electron Transport ; EMBO21 ; EMBO23 ; EMBO30 ; Enzymes ; Gene Deletion ; Isotope Labeling ; Legumes ; Medicago - microbiology ; Metabolic pathways ; Metabolism ; Nitrogen ; Nitrogen Fixation ; Nitrogenase - metabolism ; Nitrogenation ; Phenotype ; Reducing agents ; Sinorhizobium - genetics ; Sinorhizobium - physiology ; Sinorhizobium meliloti ; Succinic Acid - metabolism ; Sustainability ; Sustainable agriculture ; Symbiosis ; Symbiosis - genetics ; TnSeq ; Transaminases</subject><ispartof>Molecular systems biology, 2020-06, Vol.16 (6), p.e9419-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6489-65d71a92f6bdf4b4d13e567d245190ae1e059cc26e709df9afac7e9285d236b73</citedby><cites>FETCH-LOGICAL-c6489-65d71a92f6bdf4b4d13e567d245190ae1e059cc26e709df9afac7e9285d236b73</cites><orcidid>0000-0001-5006-6874 ; 0000-0001-7724-4562 ; 0000-0002-5923-0770 ; 0000-0002-9528-3685 ; 0000000295283685 ; 0000000150066874 ; 0000000259230770 ; 0000000177244562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268258/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2417968949?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11541,25731,27901,27902,36989,36990,44566,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32490601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1816254$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Flores‐Tinoco, Carlos Eduardo</creatorcontrib><creatorcontrib>Tschan, Flavia</creatorcontrib><creatorcontrib>Fuhrer, Tobias</creatorcontrib><creatorcontrib>Margot, Céline</creatorcontrib><creatorcontrib>Sauer, Uwe</creatorcontrib><creatorcontrib>Christen, Matthias</creatorcontrib><creatorcontrib>Christen, Beat</creatorcontrib><creatorcontrib>Univ. of California, Berkeley, CA (United States)</creatorcontrib><title>Co‐catabolism of arginine and succinate drives symbiotic nitrogen fixation</title><title>Molecular systems biology</title><addtitle>Mol Syst Biol</addtitle><addtitle>Mol Syst Biol</addtitle><description>Biological nitrogen fixation emerging from the symbiosis between bacteria and crop plants holds promise to increase the sustainability of agriculture. One of the biggest hurdles for the engineering of nitrogen‐fixing organisms is an incomplete knowledge of metabolic interactions between microbe and plant. In contrast to the previously assumed supply of only succinate, we describe here the CATCH‐N cycle as a novel metabolic pathway that co‐catabolizes plant‐provided arginine and succinate to drive the energy‐demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia. Using systems biology, isotope labeling studies and transposon sequencing in conjunction with biochemical characterization, we uncovered highly redundant network components of the CATCH‐N cycle including transaminases that interlink the co‐catabolism of arginine and succinate. The CATCH‐N cycle uses N 2 as an additional sink for reductant and therefore delivers up to 25% higher yields of nitrogen than classical arginine catabolism—two alanines and three ammonium ions are secreted for each input of arginine and succinate. We argue that the CATCH‐N cycle has evolved as part of a synergistic interaction to sustain bacterial metabolism in the microoxic and highly acid environment of symbiosomes. Thus, the CATCH‐N cycle entangles the metabolism of both partners to promote symbiosis. Our results provide a theoretical framework and metabolic blueprint for the rational design of plants and plant‐associated organisms with new properties to improve nitrogen fixation. Synopsis This study challenges the current model of nitrogen exchange in rhizobia‐legumes symbiosis and describes the CATCH‐N cycle, which operates on the provision of arginine and succinate by the plant as part of a metabolic network driving symbiotic nitrogen fixation in rhizobia. The CATCH‐N cycle co‐catabolises plant‐provided arginine and succinate to drive the energy‐demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia. The CATCH‐N cycle functions as an effective mechanism to promote the survival of bacteroids within infected plant cells and results in a net gain of assimilated nitrogen that subsequently amplifies the plant's arginine biosynthesis capacity. The study represents an important step towards the rational engineering of artificial nitrogen‐fixing microbes. Graphical Abstract This study challenges the current model of nitrogen exchange in rhizobia‐legumes symbiosis and describes the CATCH‐N cycle, which operates on the provision of arginine and succinate by the plant as part of a metabolic network driving symbiotic nitrogen fixation in rhizobia.</description><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Agricultural engineering</subject><subject>Amination</subject><subject>Amino acids</subject><subject>Ammonium</subject><subject>Arginase - metabolism</subject><subject>Arginine</subject><subject>Arginine - metabolism</subject><subject>Bacteria</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>biological nitrogen fixation</subject><subject>Bradyrhizobium - genetics</subject><subject>Bradyrhizobium - physiology</subject><subject>Bradyrhizobium diazoefficiens</subject><subject>Carbon Isotopes</subject><subject>Catabolism</subject><subject>CATCH‐N cycle</subject><subject>Climate change</subject><subject>Dehydrogenases</subject><subject>DNA Transposable Elements - genetics</subject><subject>Electron Transport</subject><subject>EMBO21</subject><subject>EMBO23</subject><subject>EMBO30</subject><subject>Enzymes</subject><subject>Gene Deletion</subject><subject>Isotope Labeling</subject><subject>Legumes</subject><subject>Medicago - microbiology</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Nitrogen</subject><subject>Nitrogen Fixation</subject><subject>Nitrogenase - metabolism</subject><subject>Nitrogenation</subject><subject>Phenotype</subject><subject>Reducing agents</subject><subject>Sinorhizobium - genetics</subject><subject>Sinorhizobium - physiology</subject><subject>Sinorhizobium meliloti</subject><subject>Succinic Acid - metabolism</subject><subject>Sustainability</subject><subject>Sustainable agriculture</subject><subject>Symbiosis</subject><subject>Symbiosis - genetics</subject><subject>TnSeq</subject><subject>Transaminases</subject><issn>1744-4292</issn><issn>1744-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9u1DAQhyMEoqVw5IoiuHDZxeM4jn1BKiv-VFrEAThbjj3eepXYxU4Ke-MReEaehLRplxahnmzZ33wej35F8RTIEmpa01d9bpeUgJQM5L3iEBrGFoxKev_G_qB4lPOWkEqAoA-Lg4oySTiBw2K9ir9__jJ60G3sfO7L6EqdNj74gKUOtsyjMT7oAUub_DnmMu_61sfBmzL4IcUNhtL5H3rwMTwuHjjdZXxytR4VX9-9_bL6sFh_en-yOl4vDGdCLnhtG9CSOt5ax1pmocKaN5ayGiTRCEhqaQzl2BBpndROmwYlFbWlFW-b6qg4mb026q06S77Xaaei9uryIKaN0mnqsEPFwHDeSsfQCeYMaiEFITVHJrkFeuF6PbvOxrZHazAMSXe3pLdvgj9Vm3iuGsoFrcUkeD4LYh68ysYPaE5NDAHNoEAApzWboJdXr6T4bcQ8qN5ng12nA8YxK8qIBAlAL9AX_6DbOKYwzXOiWANSMErvpqCRXEgmJ2oxUybFnBO6_b-AqMv4qCk-6jo-E__s5jD29HVeJoDNwHff4e5um_r4-c3eu5zL8lQRNpj-dvv_Rv4APanfFA</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Flores‐Tinoco, Carlos Eduardo</creator><creator>Tschan, Flavia</creator><creator>Fuhrer, Tobias</creator><creator>Margot, Céline</creator><creator>Sauer, Uwe</creator><creator>Christen, Matthias</creator><creator>Christen, Beat</creator><general>Nature Publishing Group UK</general><general>EMBO Press</general><general>Wiley</general><general>John Wiley and Sons Inc</general><general>Springer Nature</general><scope>C6C</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5006-6874</orcidid><orcidid>https://orcid.org/0000-0001-7724-4562</orcidid><orcidid>https://orcid.org/0000-0002-5923-0770</orcidid><orcidid>https://orcid.org/0000-0002-9528-3685</orcidid><orcidid>https://orcid.org/0000000295283685</orcidid><orcidid>https://orcid.org/0000000150066874</orcidid><orcidid>https://orcid.org/0000000259230770</orcidid><orcidid>https://orcid.org/0000000177244562</orcidid></search><sort><creationdate>202006</creationdate><title>Co‐catabolism of arginine and succinate drives symbiotic nitrogen fixation</title><author>Flores‐Tinoco, Carlos Eduardo ; Tschan, Flavia ; Fuhrer, Tobias ; Margot, Céline ; Sauer, Uwe ; Christen, Matthias ; Christen, Beat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6489-65d71a92f6bdf4b4d13e567d245190ae1e059cc26e709df9afac7e9285d236b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Agricultural engineering</topic><topic>Amination</topic><topic>Amino acids</topic><topic>Ammonium</topic><topic>Arginase - metabolism</topic><topic>Arginine</topic><topic>Arginine - metabolism</topic><topic>Bacteria</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>biological nitrogen fixation</topic><topic>Bradyrhizobium - genetics</topic><topic>Bradyrhizobium - physiology</topic><topic>Bradyrhizobium diazoefficiens</topic><topic>Carbon Isotopes</topic><topic>Catabolism</topic><topic>CATCH‐N cycle</topic><topic>Climate change</topic><topic>Dehydrogenases</topic><topic>DNA Transposable Elements - genetics</topic><topic>Electron Transport</topic><topic>EMBO21</topic><topic>EMBO23</topic><topic>EMBO30</topic><topic>Enzymes</topic><topic>Gene Deletion</topic><topic>Isotope Labeling</topic><topic>Legumes</topic><topic>Medicago - microbiology</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Nitrogen</topic><topic>Nitrogen Fixation</topic><topic>Nitrogenase - metabolism</topic><topic>Nitrogenation</topic><topic>Phenotype</topic><topic>Reducing agents</topic><topic>Sinorhizobium - genetics</topic><topic>Sinorhizobium - physiology</topic><topic>Sinorhizobium meliloti</topic><topic>Succinic Acid - metabolism</topic><topic>Sustainability</topic><topic>Sustainable agriculture</topic><topic>Symbiosis</topic><topic>Symbiosis - genetics</topic><topic>TnSeq</topic><topic>Transaminases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flores‐Tinoco, Carlos Eduardo</creatorcontrib><creatorcontrib>Tschan, Flavia</creatorcontrib><creatorcontrib>Fuhrer, Tobias</creatorcontrib><creatorcontrib>Margot, Céline</creatorcontrib><creatorcontrib>Sauer, Uwe</creatorcontrib><creatorcontrib>Christen, Matthias</creatorcontrib><creatorcontrib>Christen, Beat</creatorcontrib><creatorcontrib>Univ. of California, Berkeley, CA (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>Wiley-Blackwell Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecular systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flores‐Tinoco, Carlos Eduardo</au><au>Tschan, Flavia</au><au>Fuhrer, Tobias</au><au>Margot, Céline</au><au>Sauer, Uwe</au><au>Christen, Matthias</au><au>Christen, Beat</au><aucorp>Univ. of California, Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co‐catabolism of arginine and succinate drives symbiotic nitrogen fixation</atitle><jtitle>Molecular systems biology</jtitle><stitle>Mol Syst Biol</stitle><addtitle>Mol Syst Biol</addtitle><date>2020-06</date><risdate>2020</risdate><volume>16</volume><issue>6</issue><spage>e9419</spage><epage>n/a</epage><pages>e9419-n/a</pages><issn>1744-4292</issn><eissn>1744-4292</eissn><abstract>Biological nitrogen fixation emerging from the symbiosis between bacteria and crop plants holds promise to increase the sustainability of agriculture. One of the biggest hurdles for the engineering of nitrogen‐fixing organisms is an incomplete knowledge of metabolic interactions between microbe and plant. In contrast to the previously assumed supply of only succinate, we describe here the CATCH‐N cycle as a novel metabolic pathway that co‐catabolizes plant‐provided arginine and succinate to drive the energy‐demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia. Using systems biology, isotope labeling studies and transposon sequencing in conjunction with biochemical characterization, we uncovered highly redundant network components of the CATCH‐N cycle including transaminases that interlink the co‐catabolism of arginine and succinate. The CATCH‐N cycle uses N 2 as an additional sink for reductant and therefore delivers up to 25% higher yields of nitrogen than classical arginine catabolism—two alanines and three ammonium ions are secreted for each input of arginine and succinate. We argue that the CATCH‐N cycle has evolved as part of a synergistic interaction to sustain bacterial metabolism in the microoxic and highly acid environment of symbiosomes. Thus, the CATCH‐N cycle entangles the metabolism of both partners to promote symbiosis. Our results provide a theoretical framework and metabolic blueprint for the rational design of plants and plant‐associated organisms with new properties to improve nitrogen fixation. Synopsis This study challenges the current model of nitrogen exchange in rhizobia‐legumes symbiosis and describes the CATCH‐N cycle, which operates on the provision of arginine and succinate by the plant as part of a metabolic network driving symbiotic nitrogen fixation in rhizobia. The CATCH‐N cycle co‐catabolises plant‐provided arginine and succinate to drive the energy‐demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia. The CATCH‐N cycle functions as an effective mechanism to promote the survival of bacteroids within infected plant cells and results in a net gain of assimilated nitrogen that subsequently amplifies the plant's arginine biosynthesis capacity. The study represents an important step towards the rational engineering of artificial nitrogen‐fixing microbes. Graphical Abstract This study challenges the current model of nitrogen exchange in rhizobia‐legumes symbiosis and describes the CATCH‐N cycle, which operates on the provision of arginine and succinate by the plant as part of a metabolic network driving symbiotic nitrogen fixation in rhizobia.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32490601</pmid><doi>10.15252/msb.20199419</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5006-6874</orcidid><orcidid>https://orcid.org/0000-0001-7724-4562</orcidid><orcidid>https://orcid.org/0000-0002-5923-0770</orcidid><orcidid>https://orcid.org/0000-0002-9528-3685</orcidid><orcidid>https://orcid.org/0000000295283685</orcidid><orcidid>https://orcid.org/0000000150066874</orcidid><orcidid>https://orcid.org/0000000259230770</orcidid><orcidid>https://orcid.org/0000000177244562</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-4292
ispartof Molecular systems biology, 2020-06, Vol.16 (6), p.e9419-n/a
issn 1744-4292
1744-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_41c66b9f4ef84fcea8980056e496d127
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (PMC); Free Full-Text Journals in Chemistry
subjects Adenosine Triphosphate - biosynthesis
Adenosine Triphosphate - metabolism
Agricultural engineering
Amination
Amino acids
Ammonium
Arginase - metabolism
Arginine
Arginine - metabolism
Bacteria
BASIC BIOLOGICAL SCIENCES
biological nitrogen fixation
Bradyrhizobium - genetics
Bradyrhizobium - physiology
Bradyrhizobium diazoefficiens
Carbon Isotopes
Catabolism
CATCH‐N cycle
Climate change
Dehydrogenases
DNA Transposable Elements - genetics
Electron Transport
EMBO21
EMBO23
EMBO30
Enzymes
Gene Deletion
Isotope Labeling
Legumes
Medicago - microbiology
Metabolic pathways
Metabolism
Nitrogen
Nitrogen Fixation
Nitrogenase - metabolism
Nitrogenation
Phenotype
Reducing agents
Sinorhizobium - genetics
Sinorhizobium - physiology
Sinorhizobium meliloti
Succinic Acid - metabolism
Sustainability
Sustainable agriculture
Symbiosis
Symbiosis - genetics
TnSeq
Transaminases
title Co‐catabolism of arginine and succinate drives symbiotic nitrogen fixation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co%E2%80%90catabolism%20of%20arginine%20and%20succinate%20drives%20symbiotic%20nitrogen%20fixation&rft.jtitle=Molecular%20systems%20biology&rft.au=Flores%E2%80%90Tinoco,%20Carlos%20Eduardo&rft.aucorp=Univ.%20of%20California,%20Berkeley,%20CA%20(United%20States)&rft.date=2020-06&rft.volume=16&rft.issue=6&rft.spage=e9419&rft.epage=n/a&rft.pages=e9419-n/a&rft.issn=1744-4292&rft.eissn=1744-4292&rft_id=info:doi/10.15252/msb.20199419&rft_dat=%3Cproquest_doaj_%3E2417968949%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6489-65d71a92f6bdf4b4d13e567d245190ae1e059cc26e709df9afac7e9285d236b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2417968949&rft_id=info:pmid/32490601&rfr_iscdi=true