Loading…
Co‐catabolism of arginine and succinate drives symbiotic nitrogen fixation
Biological nitrogen fixation emerging from the symbiosis between bacteria and crop plants holds promise to increase the sustainability of agriculture. One of the biggest hurdles for the engineering of nitrogen‐fixing organisms is an incomplete knowledge of metabolic interactions between microbe and...
Saved in:
Published in: | Molecular systems biology 2020-06, Vol.16 (6), p.e9419-n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6489-65d71a92f6bdf4b4d13e567d245190ae1e059cc26e709df9afac7e9285d236b73 |
---|---|
cites | cdi_FETCH-LOGICAL-c6489-65d71a92f6bdf4b4d13e567d245190ae1e059cc26e709df9afac7e9285d236b73 |
container_end_page | n/a |
container_issue | 6 |
container_start_page | e9419 |
container_title | Molecular systems biology |
container_volume | 16 |
creator | Flores‐Tinoco, Carlos Eduardo Tschan, Flavia Fuhrer, Tobias Margot, Céline Sauer, Uwe Christen, Matthias Christen, Beat |
description | Biological nitrogen fixation emerging from the symbiosis between bacteria and crop plants holds promise to increase the sustainability of agriculture. One of the biggest hurdles for the engineering of nitrogen‐fixing organisms is an incomplete knowledge of metabolic interactions between microbe and plant. In contrast to the previously assumed supply of only succinate, we describe here the CATCH‐N cycle as a novel metabolic pathway that co‐catabolizes plant‐provided arginine and succinate to drive the energy‐demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia. Using systems biology, isotope labeling studies and transposon sequencing in conjunction with biochemical characterization, we uncovered highly redundant network components of the CATCH‐N cycle including transaminases that interlink the co‐catabolism of arginine and succinate. The CATCH‐N cycle uses N
2
as an additional sink for reductant and therefore delivers up to 25% higher yields of nitrogen than classical arginine catabolism—two alanines and three ammonium ions are secreted for each input of arginine and succinate. We argue that the CATCH‐N cycle has evolved as part of a synergistic interaction to sustain bacterial metabolism in the microoxic and highly acid environment of symbiosomes. Thus, the CATCH‐N cycle entangles the metabolism of both partners to promote symbiosis. Our results provide a theoretical framework and metabolic blueprint for the rational design of plants and plant‐associated organisms with new properties to improve nitrogen fixation.
Synopsis
This study challenges the current model of nitrogen exchange in rhizobia‐legumes symbiosis and describes the CATCH‐N cycle, which operates on the provision of arginine and succinate by the plant as part of a metabolic network driving symbiotic nitrogen fixation in rhizobia.
The CATCH‐N cycle co‐catabolises plant‐provided arginine and succinate to drive the energy‐demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia.
The CATCH‐N cycle functions as an effective mechanism to promote the survival of bacteroids within infected plant cells and results in a net gain of assimilated nitrogen that subsequently amplifies the plant's arginine biosynthesis capacity.
The study represents an important step towards the rational engineering of artificial nitrogen‐fixing microbes.
Graphical Abstract
This study challenges the current model of nitrogen exchange in rhizobia‐legumes symbiosis and describes the CATCH‐ |
doi_str_mv | 10.15252/msb.20199419 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_41c66b9f4ef84fcea8980056e496d127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_41c66b9f4ef84fcea8980056e496d127</doaj_id><sourcerecordid>2417968949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6489-65d71a92f6bdf4b4d13e567d245190ae1e059cc26e709df9afac7e9285d236b73</originalsourceid><addsrcrecordid>eNp9ks9u1DAQhyMEoqVw5IoiuHDZxeM4jn1BKiv-VFrEAThbjj3eepXYxU4Ke-MReEaehLRplxahnmzZ33wej35F8RTIEmpa01d9bpeUgJQM5L3iEBrGFoxKev_G_qB4lPOWkEqAoA-Lg4oySTiBw2K9ir9__jJ60G3sfO7L6EqdNj74gKUOtsyjMT7oAUub_DnmMu_61sfBmzL4IcUNhtL5H3rwMTwuHjjdZXxytR4VX9-9_bL6sFh_en-yOl4vDGdCLnhtG9CSOt5ax1pmocKaN5ayGiTRCEhqaQzl2BBpndROmwYlFbWlFW-b6qg4mb026q06S77Xaaei9uryIKaN0mnqsEPFwHDeSsfQCeYMaiEFITVHJrkFeuF6PbvOxrZHazAMSXe3pLdvgj9Vm3iuGsoFrcUkeD4LYh68ysYPaE5NDAHNoEAApzWboJdXr6T4bcQ8qN5ng12nA8YxK8qIBAlAL9AX_6DbOKYwzXOiWANSMErvpqCRXEgmJ2oxUybFnBO6_b-AqMv4qCk-6jo-E__s5jD29HVeJoDNwHff4e5um_r4-c3eu5zL8lQRNpj-dvv_Rv4APanfFA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417968949</pqid></control><display><type>article</type><title>Co‐catabolism of arginine and succinate drives symbiotic nitrogen fixation</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (PMC)</source><source>Free Full-Text Journals in Chemistry</source><creator>Flores‐Tinoco, Carlos Eduardo ; Tschan, Flavia ; Fuhrer, Tobias ; Margot, Céline ; Sauer, Uwe ; Christen, Matthias ; Christen, Beat</creator><creatorcontrib>Flores‐Tinoco, Carlos Eduardo ; Tschan, Flavia ; Fuhrer, Tobias ; Margot, Céline ; Sauer, Uwe ; Christen, Matthias ; Christen, Beat ; Univ. of California, Berkeley, CA (United States)</creatorcontrib><description>Biological nitrogen fixation emerging from the symbiosis between bacteria and crop plants holds promise to increase the sustainability of agriculture. One of the biggest hurdles for the engineering of nitrogen‐fixing organisms is an incomplete knowledge of metabolic interactions between microbe and plant. In contrast to the previously assumed supply of only succinate, we describe here the CATCH‐N cycle as a novel metabolic pathway that co‐catabolizes plant‐provided arginine and succinate to drive the energy‐demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia. Using systems biology, isotope labeling studies and transposon sequencing in conjunction with biochemical characterization, we uncovered highly redundant network components of the CATCH‐N cycle including transaminases that interlink the co‐catabolism of arginine and succinate. The CATCH‐N cycle uses N
2
as an additional sink for reductant and therefore delivers up to 25% higher yields of nitrogen than classical arginine catabolism—two alanines and three ammonium ions are secreted for each input of arginine and succinate. We argue that the CATCH‐N cycle has evolved as part of a synergistic interaction to sustain bacterial metabolism in the microoxic and highly acid environment of symbiosomes. Thus, the CATCH‐N cycle entangles the metabolism of both partners to promote symbiosis. Our results provide a theoretical framework and metabolic blueprint for the rational design of plants and plant‐associated organisms with new properties to improve nitrogen fixation.
Synopsis
This study challenges the current model of nitrogen exchange in rhizobia‐legumes symbiosis and describes the CATCH‐N cycle, which operates on the provision of arginine and succinate by the plant as part of a metabolic network driving symbiotic nitrogen fixation in rhizobia.
The CATCH‐N cycle co‐catabolises plant‐provided arginine and succinate to drive the energy‐demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia.
The CATCH‐N cycle functions as an effective mechanism to promote the survival of bacteroids within infected plant cells and results in a net gain of assimilated nitrogen that subsequently amplifies the plant's arginine biosynthesis capacity.
The study represents an important step towards the rational engineering of artificial nitrogen‐fixing microbes.
Graphical Abstract
This study challenges the current model of nitrogen exchange in rhizobia‐legumes symbiosis and describes the CATCH‐N cycle, which operates on the provision of arginine and succinate by the plant as part of a metabolic network driving symbiotic nitrogen fixation in rhizobia.</description><identifier>ISSN: 1744-4292</identifier><identifier>EISSN: 1744-4292</identifier><identifier>DOI: 10.15252/msb.20199419</identifier><identifier>PMID: 32490601</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adenosine Triphosphate - biosynthesis ; Adenosine Triphosphate - metabolism ; Agricultural engineering ; Amination ; Amino acids ; Ammonium ; Arginase - metabolism ; Arginine ; Arginine - metabolism ; Bacteria ; BASIC BIOLOGICAL SCIENCES ; biological nitrogen fixation ; Bradyrhizobium - genetics ; Bradyrhizobium - physiology ; Bradyrhizobium diazoefficiens ; Carbon Isotopes ; Catabolism ; CATCH‐N cycle ; Climate change ; Dehydrogenases ; DNA Transposable Elements - genetics ; Electron Transport ; EMBO21 ; EMBO23 ; EMBO30 ; Enzymes ; Gene Deletion ; Isotope Labeling ; Legumes ; Medicago - microbiology ; Metabolic pathways ; Metabolism ; Nitrogen ; Nitrogen Fixation ; Nitrogenase - metabolism ; Nitrogenation ; Phenotype ; Reducing agents ; Sinorhizobium - genetics ; Sinorhizobium - physiology ; Sinorhizobium meliloti ; Succinic Acid - metabolism ; Sustainability ; Sustainable agriculture ; Symbiosis ; Symbiosis - genetics ; TnSeq ; Transaminases</subject><ispartof>Molecular systems biology, 2020-06, Vol.16 (6), p.e9419-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6489-65d71a92f6bdf4b4d13e567d245190ae1e059cc26e709df9afac7e9285d236b73</citedby><cites>FETCH-LOGICAL-c6489-65d71a92f6bdf4b4d13e567d245190ae1e059cc26e709df9afac7e9285d236b73</cites><orcidid>0000-0001-5006-6874 ; 0000-0001-7724-4562 ; 0000-0002-5923-0770 ; 0000-0002-9528-3685 ; 0000000295283685 ; 0000000150066874 ; 0000000259230770 ; 0000000177244562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268258/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2417968949?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11541,25731,27901,27902,36989,36990,44566,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32490601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1816254$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Flores‐Tinoco, Carlos Eduardo</creatorcontrib><creatorcontrib>Tschan, Flavia</creatorcontrib><creatorcontrib>Fuhrer, Tobias</creatorcontrib><creatorcontrib>Margot, Céline</creatorcontrib><creatorcontrib>Sauer, Uwe</creatorcontrib><creatorcontrib>Christen, Matthias</creatorcontrib><creatorcontrib>Christen, Beat</creatorcontrib><creatorcontrib>Univ. of California, Berkeley, CA (United States)</creatorcontrib><title>Co‐catabolism of arginine and succinate drives symbiotic nitrogen fixation</title><title>Molecular systems biology</title><addtitle>Mol Syst Biol</addtitle><addtitle>Mol Syst Biol</addtitle><description>Biological nitrogen fixation emerging from the symbiosis between bacteria and crop plants holds promise to increase the sustainability of agriculture. One of the biggest hurdles for the engineering of nitrogen‐fixing organisms is an incomplete knowledge of metabolic interactions between microbe and plant. In contrast to the previously assumed supply of only succinate, we describe here the CATCH‐N cycle as a novel metabolic pathway that co‐catabolizes plant‐provided arginine and succinate to drive the energy‐demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia. Using systems biology, isotope labeling studies and transposon sequencing in conjunction with biochemical characterization, we uncovered highly redundant network components of the CATCH‐N cycle including transaminases that interlink the co‐catabolism of arginine and succinate. The CATCH‐N cycle uses N
2
as an additional sink for reductant and therefore delivers up to 25% higher yields of nitrogen than classical arginine catabolism—two alanines and three ammonium ions are secreted for each input of arginine and succinate. We argue that the CATCH‐N cycle has evolved as part of a synergistic interaction to sustain bacterial metabolism in the microoxic and highly acid environment of symbiosomes. Thus, the CATCH‐N cycle entangles the metabolism of both partners to promote symbiosis. Our results provide a theoretical framework and metabolic blueprint for the rational design of plants and plant‐associated organisms with new properties to improve nitrogen fixation.
Synopsis
This study challenges the current model of nitrogen exchange in rhizobia‐legumes symbiosis and describes the CATCH‐N cycle, which operates on the provision of arginine and succinate by the plant as part of a metabolic network driving symbiotic nitrogen fixation in rhizobia.
The CATCH‐N cycle co‐catabolises plant‐provided arginine and succinate to drive the energy‐demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia.
The CATCH‐N cycle functions as an effective mechanism to promote the survival of bacteroids within infected plant cells and results in a net gain of assimilated nitrogen that subsequently amplifies the plant's arginine biosynthesis capacity.
The study represents an important step towards the rational engineering of artificial nitrogen‐fixing microbes.
Graphical Abstract
This study challenges the current model of nitrogen exchange in rhizobia‐legumes symbiosis and describes the CATCH‐N cycle, which operates on the provision of arginine and succinate by the plant as part of a metabolic network driving symbiotic nitrogen fixation in rhizobia.</description><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Agricultural engineering</subject><subject>Amination</subject><subject>Amino acids</subject><subject>Ammonium</subject><subject>Arginase - metabolism</subject><subject>Arginine</subject><subject>Arginine - metabolism</subject><subject>Bacteria</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>biological nitrogen fixation</subject><subject>Bradyrhizobium - genetics</subject><subject>Bradyrhizobium - physiology</subject><subject>Bradyrhizobium diazoefficiens</subject><subject>Carbon Isotopes</subject><subject>Catabolism</subject><subject>CATCH‐N cycle</subject><subject>Climate change</subject><subject>Dehydrogenases</subject><subject>DNA Transposable Elements - genetics</subject><subject>Electron Transport</subject><subject>EMBO21</subject><subject>EMBO23</subject><subject>EMBO30</subject><subject>Enzymes</subject><subject>Gene Deletion</subject><subject>Isotope Labeling</subject><subject>Legumes</subject><subject>Medicago - microbiology</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Nitrogen</subject><subject>Nitrogen Fixation</subject><subject>Nitrogenase - metabolism</subject><subject>Nitrogenation</subject><subject>Phenotype</subject><subject>Reducing agents</subject><subject>Sinorhizobium - genetics</subject><subject>Sinorhizobium - physiology</subject><subject>Sinorhizobium meliloti</subject><subject>Succinic Acid - metabolism</subject><subject>Sustainability</subject><subject>Sustainable agriculture</subject><subject>Symbiosis</subject><subject>Symbiosis - genetics</subject><subject>TnSeq</subject><subject>Transaminases</subject><issn>1744-4292</issn><issn>1744-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9u1DAQhyMEoqVw5IoiuHDZxeM4jn1BKiv-VFrEAThbjj3eepXYxU4Ke-MReEaehLRplxahnmzZ33wej35F8RTIEmpa01d9bpeUgJQM5L3iEBrGFoxKev_G_qB4lPOWkEqAoA-Lg4oySTiBw2K9ir9__jJ60G3sfO7L6EqdNj74gKUOtsyjMT7oAUub_DnmMu_61sfBmzL4IcUNhtL5H3rwMTwuHjjdZXxytR4VX9-9_bL6sFh_en-yOl4vDGdCLnhtG9CSOt5ax1pmocKaN5ayGiTRCEhqaQzl2BBpndROmwYlFbWlFW-b6qg4mb026q06S77Xaaei9uryIKaN0mnqsEPFwHDeSsfQCeYMaiEFITVHJrkFeuF6PbvOxrZHazAMSXe3pLdvgj9Vm3iuGsoFrcUkeD4LYh68ysYPaE5NDAHNoEAApzWboJdXr6T4bcQ8qN5ng12nA8YxK8qIBAlAL9AX_6DbOKYwzXOiWANSMErvpqCRXEgmJ2oxUybFnBO6_b-AqMv4qCk-6jo-E__s5jD29HVeJoDNwHff4e5um_r4-c3eu5zL8lQRNpj-dvv_Rv4APanfFA</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Flores‐Tinoco, Carlos Eduardo</creator><creator>Tschan, Flavia</creator><creator>Fuhrer, Tobias</creator><creator>Margot, Céline</creator><creator>Sauer, Uwe</creator><creator>Christen, Matthias</creator><creator>Christen, Beat</creator><general>Nature Publishing Group UK</general><general>EMBO Press</general><general>Wiley</general><general>John Wiley and Sons Inc</general><general>Springer Nature</general><scope>C6C</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5006-6874</orcidid><orcidid>https://orcid.org/0000-0001-7724-4562</orcidid><orcidid>https://orcid.org/0000-0002-5923-0770</orcidid><orcidid>https://orcid.org/0000-0002-9528-3685</orcidid><orcidid>https://orcid.org/0000000295283685</orcidid><orcidid>https://orcid.org/0000000150066874</orcidid><orcidid>https://orcid.org/0000000259230770</orcidid><orcidid>https://orcid.org/0000000177244562</orcidid></search><sort><creationdate>202006</creationdate><title>Co‐catabolism of arginine and succinate drives symbiotic nitrogen fixation</title><author>Flores‐Tinoco, Carlos Eduardo ; Tschan, Flavia ; Fuhrer, Tobias ; Margot, Céline ; Sauer, Uwe ; Christen, Matthias ; Christen, Beat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6489-65d71a92f6bdf4b4d13e567d245190ae1e059cc26e709df9afac7e9285d236b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Agricultural engineering</topic><topic>Amination</topic><topic>Amino acids</topic><topic>Ammonium</topic><topic>Arginase - metabolism</topic><topic>Arginine</topic><topic>Arginine - metabolism</topic><topic>Bacteria</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>biological nitrogen fixation</topic><topic>Bradyrhizobium - genetics</topic><topic>Bradyrhizobium - physiology</topic><topic>Bradyrhizobium diazoefficiens</topic><topic>Carbon Isotopes</topic><topic>Catabolism</topic><topic>CATCH‐N cycle</topic><topic>Climate change</topic><topic>Dehydrogenases</topic><topic>DNA Transposable Elements - genetics</topic><topic>Electron Transport</topic><topic>EMBO21</topic><topic>EMBO23</topic><topic>EMBO30</topic><topic>Enzymes</topic><topic>Gene Deletion</topic><topic>Isotope Labeling</topic><topic>Legumes</topic><topic>Medicago - microbiology</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Nitrogen</topic><topic>Nitrogen Fixation</topic><topic>Nitrogenase - metabolism</topic><topic>Nitrogenation</topic><topic>Phenotype</topic><topic>Reducing agents</topic><topic>Sinorhizobium - genetics</topic><topic>Sinorhizobium - physiology</topic><topic>Sinorhizobium meliloti</topic><topic>Succinic Acid - metabolism</topic><topic>Sustainability</topic><topic>Sustainable agriculture</topic><topic>Symbiosis</topic><topic>Symbiosis - genetics</topic><topic>TnSeq</topic><topic>Transaminases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flores‐Tinoco, Carlos Eduardo</creatorcontrib><creatorcontrib>Tschan, Flavia</creatorcontrib><creatorcontrib>Fuhrer, Tobias</creatorcontrib><creatorcontrib>Margot, Céline</creatorcontrib><creatorcontrib>Sauer, Uwe</creatorcontrib><creatorcontrib>Christen, Matthias</creatorcontrib><creatorcontrib>Christen, Beat</creatorcontrib><creatorcontrib>Univ. of California, Berkeley, CA (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>Wiley-Blackwell Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecular systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flores‐Tinoco, Carlos Eduardo</au><au>Tschan, Flavia</au><au>Fuhrer, Tobias</au><au>Margot, Céline</au><au>Sauer, Uwe</au><au>Christen, Matthias</au><au>Christen, Beat</au><aucorp>Univ. of California, Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co‐catabolism of arginine and succinate drives symbiotic nitrogen fixation</atitle><jtitle>Molecular systems biology</jtitle><stitle>Mol Syst Biol</stitle><addtitle>Mol Syst Biol</addtitle><date>2020-06</date><risdate>2020</risdate><volume>16</volume><issue>6</issue><spage>e9419</spage><epage>n/a</epage><pages>e9419-n/a</pages><issn>1744-4292</issn><eissn>1744-4292</eissn><abstract>Biological nitrogen fixation emerging from the symbiosis between bacteria and crop plants holds promise to increase the sustainability of agriculture. One of the biggest hurdles for the engineering of nitrogen‐fixing organisms is an incomplete knowledge of metabolic interactions between microbe and plant. In contrast to the previously assumed supply of only succinate, we describe here the CATCH‐N cycle as a novel metabolic pathway that co‐catabolizes plant‐provided arginine and succinate to drive the energy‐demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia. Using systems biology, isotope labeling studies and transposon sequencing in conjunction with biochemical characterization, we uncovered highly redundant network components of the CATCH‐N cycle including transaminases that interlink the co‐catabolism of arginine and succinate. The CATCH‐N cycle uses N
2
as an additional sink for reductant and therefore delivers up to 25% higher yields of nitrogen than classical arginine catabolism—two alanines and three ammonium ions are secreted for each input of arginine and succinate. We argue that the CATCH‐N cycle has evolved as part of a synergistic interaction to sustain bacterial metabolism in the microoxic and highly acid environment of symbiosomes. Thus, the CATCH‐N cycle entangles the metabolism of both partners to promote symbiosis. Our results provide a theoretical framework and metabolic blueprint for the rational design of plants and plant‐associated organisms with new properties to improve nitrogen fixation.
Synopsis
This study challenges the current model of nitrogen exchange in rhizobia‐legumes symbiosis and describes the CATCH‐N cycle, which operates on the provision of arginine and succinate by the plant as part of a metabolic network driving symbiotic nitrogen fixation in rhizobia.
The CATCH‐N cycle co‐catabolises plant‐provided arginine and succinate to drive the energy‐demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia.
The CATCH‐N cycle functions as an effective mechanism to promote the survival of bacteroids within infected plant cells and results in a net gain of assimilated nitrogen that subsequently amplifies the plant's arginine biosynthesis capacity.
The study represents an important step towards the rational engineering of artificial nitrogen‐fixing microbes.
Graphical Abstract
This study challenges the current model of nitrogen exchange in rhizobia‐legumes symbiosis and describes the CATCH‐N cycle, which operates on the provision of arginine and succinate by the plant as part of a metabolic network driving symbiotic nitrogen fixation in rhizobia.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32490601</pmid><doi>10.15252/msb.20199419</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5006-6874</orcidid><orcidid>https://orcid.org/0000-0001-7724-4562</orcidid><orcidid>https://orcid.org/0000-0002-5923-0770</orcidid><orcidid>https://orcid.org/0000-0002-9528-3685</orcidid><orcidid>https://orcid.org/0000000295283685</orcidid><orcidid>https://orcid.org/0000000150066874</orcidid><orcidid>https://orcid.org/0000000259230770</orcidid><orcidid>https://orcid.org/0000000177244562</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-4292 |
ispartof | Molecular systems biology, 2020-06, Vol.16 (6), p.e9419-n/a |
issn | 1744-4292 1744-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_41c66b9f4ef84fcea8980056e496d127 |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (PMC); Free Full-Text Journals in Chemistry |
subjects | Adenosine Triphosphate - biosynthesis Adenosine Triphosphate - metabolism Agricultural engineering Amination Amino acids Ammonium Arginase - metabolism Arginine Arginine - metabolism Bacteria BASIC BIOLOGICAL SCIENCES biological nitrogen fixation Bradyrhizobium - genetics Bradyrhizobium - physiology Bradyrhizobium diazoefficiens Carbon Isotopes Catabolism CATCH‐N cycle Climate change Dehydrogenases DNA Transposable Elements - genetics Electron Transport EMBO21 EMBO23 EMBO30 Enzymes Gene Deletion Isotope Labeling Legumes Medicago - microbiology Metabolic pathways Metabolism Nitrogen Nitrogen Fixation Nitrogenase - metabolism Nitrogenation Phenotype Reducing agents Sinorhizobium - genetics Sinorhizobium - physiology Sinorhizobium meliloti Succinic Acid - metabolism Sustainability Sustainable agriculture Symbiosis Symbiosis - genetics TnSeq Transaminases |
title | Co‐catabolism of arginine and succinate drives symbiotic nitrogen fixation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co%E2%80%90catabolism%20of%20arginine%20and%20succinate%20drives%20symbiotic%20nitrogen%20fixation&rft.jtitle=Molecular%20systems%20biology&rft.au=Flores%E2%80%90Tinoco,%20Carlos%20Eduardo&rft.aucorp=Univ.%20of%20California,%20Berkeley,%20CA%20(United%20States)&rft.date=2020-06&rft.volume=16&rft.issue=6&rft.spage=e9419&rft.epage=n/a&rft.pages=e9419-n/a&rft.issn=1744-4292&rft.eissn=1744-4292&rft_id=info:doi/10.15252/msb.20199419&rft_dat=%3Cproquest_doaj_%3E2417968949%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6489-65d71a92f6bdf4b4d13e567d245190ae1e059cc26e709df9afac7e9285d236b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2417968949&rft_id=info:pmid/32490601&rfr_iscdi=true |