Loading…

Preparation, Characterization, and In Vitro Release of Curcumin-Loaded IRMOF-10 Nanoparticles and Investigation of Their Pro-Apoptotic Effects on Human Hepatoma HepG2 Cells

Curcumin (CUR) has a bright future in the treatment of cancer as a natural active ingredient with great potential. However, curcumin has a low solubility, which limits its clinical application. In this study, IRMOF-10 was created by the direct addition of triethylamine, CUR was loaded into IRMOF-10...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2022-06, Vol.27 (12), p.3940
Main Authors: Yin, Dongge, Hu, Xueling, Cai, Mengru, Wang, Kaixin, Peng, Hulinyue, Bai, Jie, Xv, Yvchen, Fu, Tingting, Dong, Xiaoxv, Ni, Jian, Yin, Xingbin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Curcumin (CUR) has a bright future in the treatment of cancer as a natural active ingredient with great potential. However, curcumin has a low solubility, which limits its clinical application. In this study, IRMOF-10 was created by the direct addition of triethylamine, CUR was loaded into IRMOF-10 using the solvent adsorption method, and the two were characterized using a scanning electron microscope (SEM), X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG) methods, and Brunauer–Emmett–Teller (BET) analysis. We also used the MTT method, 4′,6-diamidino-2-phenylindole (DAPI) staining, the annexin V/PI method, cellular uptake, reactive oxygen species (ROS), and the mitochondrial membrane potential (MMP) to perform a safety analysis and anticancer activity study of IRMOF-10 and CUR@IRMOF-10 on HepG2 cells. Our results showed that CUR@IRMOF-10 had a CUR load of 63.96%, with an obvious slow-release phenomenon. The CUR levels released under different conditions at 60 h were 33.58% (pH 7.4) and 31.86% (pH 5.5). Cell experiments proved that IRMOF-10 was biologically safe and could promote curcumin entering the nucleus, causing a series of reactions, such as an increase in reactive oxygen species and a decrease in the mitochondrial membrane potential, thereby leading to cell apoptosis. In summary, IRMOF-10 is an excellent drug carrier and CUR@IRMOF-10 is an effective anti-liver cancer sustained-release preparation.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27123940