Loading…

Exogenous GA₃ Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla

Gibberellin (GA) is a key signal molecule inducing differentiation of tracheary elements, fibers, and xylogenesis. However the molecular mechanisms underlying the effect of GA on xylem elongation and secondary wall development in tree species remain to be determined. In this study, Betula platyphyll...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2015-09, Vol.16 (9), p.22960-22975
Main Authors: Guo, Huiyan, Wang, Yucheng, Liu, Huizi, Hu, Ping, Jia, Yuanyuan, Zhang, Chunrui, Wang, Yanmin, Gu, Shan, Yang, Chuanping, Wang, Chao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gibberellin (GA) is a key signal molecule inducing differentiation of tracheary elements, fibers, and xylogenesis. However the molecular mechanisms underlying the effect of GA on xylem elongation and secondary wall development in tree species remain to be determined. In this study, Betula platyphylla (birch) seeds were treated with 300 ppm GA₃ and/or 300 ppm paclobutrazol (PAC), seed germination was recorded, and transverse sections of hypocotyls were stained with toluidine blue; the two-month-old seedlings were treated with 50 μM GA₃ and/or 50 μM PAC, transverse sections of seedling stems were stained using phloroglucinol-HCl, and secondary wall biosynthesis related genes expression was analyzed by real-time quantitative PCR. Results indicated that germination percentage, energy and time of seeds, hypocotyl height and seedling fresh weight were enhanced by GA₃, and reduced by PAC; the xylem development was wider in GA₃-treated plants than in the control; the expression of NAC and MYB transcription factors, CESA, PAL, and GA oxidase was up-regulated during GA₃ treatment, suggesting their role in GA₃-induced xylem development in the birch. Our results suggest that GA₃ induces the expression of secondary wall biosynthesis related genes to trigger xylogenesis in the birch plants.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms160922960