Loading…
Optimal injection rate of water in the Guide Basin hot dry rock mining project
The energy reserves of hot dry rock resources are huge, thus a model to predict engineering production for efficient and stable development and utilization is sought. Based on the geological characteristics of dry rock resources in Guide Basin, Qinghai Province, China, the fully coupled wellbore–res...
Saved in:
Published in: | Energy exploration & exploitation 2019-03, Vol.37 (2), p.721-735 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The energy reserves of hot dry rock resources are huge, thus a model to predict engineering production for efficient and stable development and utilization is sought. Based on the geological characteristics of dry rock resources in Guide Basin, Qinghai Province, China, the fully coupled wellbore–reservoir simulator—T2Well—is used to model a production system using water as a heat transfer medium and simulate the system’s operation to analyze the influence of different injection rates on heat extraction. In later production stages, output temperature and reservoir pressure decrease by 10–30°C and 0.5–30 MPa, depending on injection rate; this occurs earlier and to a greater extent at higher injection rates; thermal breakthrough also occurs earlier (7–10 years). The heat extraction rate is 1–20 MW and the cumulative heat extracted is 2.1–24.2 × 10⁵ J. Lower injection rates result in relatively low heat extraction rates. For maximum economic benefit, an injection rate of 50–75 kg/s is ideal. |
---|---|
ISSN: | 0144-5987 2048-4054 |
DOI: | 10.1177/0144598718800729 |