Loading…

Modulating gene regulation function by chemically controlled transcription factor clustering

Recent studies have suggested that transcriptional protein condensates (or clusters) may play key roles in gene regulation and cell fate determination. However, it remains largely unclear how the gene regulation function is quantitatively tuned by transcription factor (TF) clustering and whether TF...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-05, Vol.13 (1), p.2663-2663, Article 2663
Main Authors: Wu, Jiegen, Chen, Baoqiang, Liu, Yadi, Ma, Liang, Huang, Wen, Lin, Yihan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent studies have suggested that transcriptional protein condensates (or clusters) may play key roles in gene regulation and cell fate determination. However, it remains largely unclear how the gene regulation function is quantitatively tuned by transcription factor (TF) clustering and whether TF clustering may confer emergent behaviors as in cell fate control systems. Here, to address this, we construct synthetic TFs whose clustering behavior can be chemically controlled. Through single-parameter tuning of the system (i.e., TF clustering propensity), we provide lines of evidence supporting the direct transcriptional activation and amplification of target genes by TF clustering. Single-gene imaging suggests that such amplification results from the modulation of transcriptional dynamics. Importantly, TF clustering propensity modulates the gene regulation function by significantly tuning the effective TF binding affinity and to a lesser extent the ultrasensitivity, contributing to bimodality and sustained response behavior that are reminiscent of canonical cell fate control systems. Collectively, these results demonstrate that TF clustering can modulate the gene regulation function to enable emergent behaviors, and highlight the potential applications of chemically controlled protein clustering. Transcription factor (TF) condensates appear to be pervasive, yet their roles remain debated. Here, the authors use a synthetic biology approach to show that TF clusters causally amplify transcription and can confer bimodality and “memory”.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-30397-2