Loading…

Human Umbilical Cord-Mesenchymal Stem Cells Survive and Migrate within the Vitreous Cavity and Ameliorate Retinal Damage in a Novel Rat Model of Chronic Glaucoma

Glaucoma is the leading cause of irreversible blindness worldwide, and pathologically elevated intraocular pressure (IOP) is the major risk factor. Neuroprotection is one of the potential therapies for glaucomatous retinal damage. Intravitreal mesenchymal stem cell (MSC) transplantation provides a v...

Full description

Saved in:
Bibliographic Details
Published in:Stem cells international 2021, Vol.2021, p.1-11
Main Authors: Wang, Yao, Lv, Jiexuan, Huang, Changquan, Li, Xiaohong, Chen, Yongxiong, Wu, Wutian, Wu, Renyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glaucoma is the leading cause of irreversible blindness worldwide, and pathologically elevated intraocular pressure (IOP) is the major risk factor. Neuroprotection is one of the potential therapies for glaucomatous retinal damage. Intravitreal mesenchymal stem cell (MSC) transplantation provides a viable therapeutic option, and human umbilical cord- (hUC-) MSCs are attractive candidates for cell-based neuroprotection. Here, we investigated the ability of transplanted hUC-MSCs to survive and migrate within the vitreous cavity and their neuroprotective effects on chronic glaucomatous retina. For this, we developed a chronic ocular hypertension (COH) rat model through the intracameral injection of allogeneic Tenon’s fibroblasts. Green fluorescent protein-transduced hUC-MSCs were then injected into the vitreous cavity one week after COH induction. Results showed that a moderate IOP elevation lasted for two months. Transplanted hUC-MSCs migrated toward the area of damaged retina, but did not penetrate into the retina. The hUC-MSCs survived for at least eight weeks in the vitreous cavity. Moreover, the hUC-MSCs were efficient at decreasing the loss of retinal ganglion cells; retinal damage was attenuated through the inhibition of apoptosis. In this study, we have developed a novel COH rat model and demonstrated the prolonged neuroprotective potential of intravitreal hUC-MSCs in chronic glaucoma.
ISSN:1687-966X
1687-9678
1687-9678
DOI:10.1155/2021/8852517