Loading…

Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis

The use of exogenous mitochondria to replenish damaged mitochondria has been proposed as a strategy for the treatment of pulmonary fibrosis. However, the success of this strategy is partially restricted by the difficulty of supplying sufficient mitochondria to diseased cells. Herein, we report the g...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-09, Vol.14 (1), p.5781-5781, Article 5781
Main Authors: Huang, Ting, Lin, Ruyi, Su, Yuanqin, Sun, Hao, Zheng, Xixi, Zhang, Jinsong, Lu, Xiaoyan, Zhao, Baiqin, Jiang, Xinchi, Huang, Lingling, Li, Ni, Shi, Jing, Fan, Xiaohui, Xu, Donghang, Zhang, Tianyuan, Gao, Jianqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of exogenous mitochondria to replenish damaged mitochondria has been proposed as a strategy for the treatment of pulmonary fibrosis. However, the success of this strategy is partially restricted by the difficulty of supplying sufficient mitochondria to diseased cells. Herein, we report the generation of high-powered mesenchymal stem cells with promoted mitochondrial biogenesis and facilitated mitochondrial transfer to injured lung cells by the sequential treatment of pioglitazone and iron oxide nanoparticles. This highly efficient mitochondrial transfer is shown to not only restore mitochondrial homeostasis but also reactivate inhibited mitophagy, consequently recovering impaired cellular functions. We perform studies in mouse to show that these high-powered mesenchymal stem cells successfully mitigate fibrotic progression in a progressive fibrosis model, which was further verified in a humanized multicellular lung spheroid model. The present findings provide a potential strategy to overcome the current limitations in mitochondrial replenishment therapy, thereby promoting therapeutic applications for fibrotic intervention. Using healthy mitochondria to restore impaired mitochondrial homeostasis is a promising therapy for pulmonary fibrosis. Here the authors use joint-engineered mesenchymal stem cells for efficient mitochondrial delivery to injured lung cells, showing a successful mitigation of the disease.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-41529-7