Loading…

Phosphorylation of CENP-A on serine 7 does not control centromere function

CENP-A is the histone H3 variant necessary to specify the location of all eukaryotic centromeres via its CENP-A targeting domain and either one of its terminal regions. In humans, several post-translational modifications occur on CENP-A, but their role in centromere function remains controversial. O...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-01, Vol.10 (1), p.175-175, Article 175
Main Authors: Barra, Viviana, Logsdon, Glennis A., Scelfo, Andrea, Hoffmann, Sebastian, Hervé, Solène, Aslanian, Aaron, Nechemia-Arbely, Yael, Cleveland, Don W., Black, Ben E., Fachinetti, Daniele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:CENP-A is the histone H3 variant necessary to specify the location of all eukaryotic centromeres via its CENP-A targeting domain and either one of its terminal regions. In humans, several post-translational modifications occur on CENP-A, but their role in centromere function remains controversial. One of these modifications of CENP-A, phosphorylation on serine 7, has been proposed to control centromere assembly and function. Here, using gene targeting at both endogenous CENP-A alleles and gene replacement in human cells, we demonstrate that a CENP-A variant that cannot be phosphorylated at serine 7 maintains correct CENP-C recruitment, faithful chromosome segregation and long-term cell viability. Thus, we conclude that phosphorylation of CENP-A on serine 7 is dispensable to maintain correct centromere dynamics and function. Phosphorylation of CENP-A on serine 7 has been proposed to control centromere assembly and function. Here, the authors use gene targeting at both endogenous CENP-A alleles and gene replacement in human cells to demonstrate that CENP-A that cannot be phosphorylated at serine 7 maintains correct CENP-C recruitment, faithful chromosome segregation and long-term cell viability.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-08073-1